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Abstract—This paper proposes a hierarchical safe reinforce-
ment learning with prescribed performance control (HSRL-
PPC) scheme to address the challenges of interconnected leader-
follower systems operating in complex environments. The frame-
work consists of two levels: at the higher level, the leader agent
detects and avoids moving obstacles while planning optimal
paths; at the lower level, the follower agent tracks the leader
within strict prescribed performance bounds. We formulate the
optimal prescribed performance safe control problem and solve
it using the Hamilton-Jacobi-Bellman (HJB) equation. Due to
system nonlinearity and obstacle complexity, we approximate
the leader’s optimal value function using a state-following neural
network that efficiently extrapolates training data to neighboring
states, while employing a regular critic neural network for the fol-
lower’s value function approximation. Lyapunov stability analysis
demonstrates the closed-loop system’s theoretical guarantees. Ex-
perimental results from two simulation examples and hardware
tests with a quadcopter-vehicle system validate the effectiveness
of the proposed approach in achieving safe navigation and precise
tracking performance in dynamic environments.

Note to Practitioners—Challenges exist in unpredictable ob-
stacles and agent limitations for the interconnected leader-
follower system. To provide a safe, efficient, and reliable control
scheme, hierarchical safe reinforcement learning with prescribed
performance control is proposed in this paper. The hierarchical
structure is utilized to coordinate the leader and follower agents
in the interconnected system, where the leader agent plans
the optimal path and avoids obstacles, and the follower agent
tracks the leader within prescribed performance bounds. Based
on the proposed hierarchical structure, engineers can design
efficient and safe control schemes for interconnected leader-
follower systems with moving obstacles. In future work, we will
address the problem of external disturbances and uncertainties
in the interconnected leader-follower system.

Index Terms—Hierarchical structure, prescribed performance,
safe reinforcement learning, interconnected leader-follower, ob-
stacle avoidance
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I. INTRODUCTION

NTERCONNECTED systems consisting of multiple agents

with different capabilities are of significant importance as
they can efficiently handle complex tasks in various appli-
cation domains [1]-[3]. Many forms of structure are avail-
able for such systems, such as hierarchical [4], decentralized
[5], or centralized architectures [6] et al. One typical and
widely adopted form is the leader-follower structure, finding
applications in scenarios like quadcopter tracking and landing
on moving vehicles [7], rocket docking with space stations
[8], and many others. Despite the advantages offered by the
leader-follower structure, challenges remain to be addressed
for its deployment, particularly in dynamic environments with
unpredictable obstacles and varying limitations [9]. Therefore,
developing efficient and secure control schemes for intercon-
nected leader-follower systems operating in complex environ-
ments is critical for risk reduction and reliable operation.

A key factor affecting the control of interconnected systems
is the utilization efficiency of system information. In order
to enhance the efficiency of controllers in utilizing system
information, various types of structures have been widely
investigated [10]-[12]. The hierarchical control structure is
one of the emerging effective methods for the coordination
of agents within the interconnected system [13]. For human-
robot interconnected system, game-based hierarchical control
structure have been proposed, where the leader interacts with
human operators to seek Nash equilibrium [14], [15]. To
control interconnected quadcopter-manipulator system, hier-
archical controllers are proposed in which quadcopter plans
optimal path safely while manipulator executes the precise
tasks [16], [17]. More applications of hierarchy structure have
been investigated in lower limb exoskeleton systems, where
the planner learns from human motion and the executor tracks
the replanned trajectory [18], [19]. For the safe and efficient
control of mobile robots in unknown environments, deep rein-
forcement learning is utilized to plan and track optimal motion
hierarchically [20], [21]. Overall, hierarchical control structure
could provide an effective method for communication and
cooperation among interconnected leader-follower systems.

In practical applications, interconnected systems usually
have to deal with unpredictable obstacles in complex environ-
ments. Ensuring the safety of agents is another significant chal-
lenge in controller design. To avoid collisions with obstacles,
safe control methods including control barrier functions [22],
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Barrier Lyapunov functions [23], and model predictive control
[24] have been widely studied. However, the explicit model of
system dynamics for these methods is often difficult to obtain
in practice. To address this issue, reinforcement learning (RL)
is proposed to provide a learning approach to approximate the
optimal control strategy by interacting with the environment
[25], [26]. With the integration of safe methods with RL, safe
reinforcement learning (SRL) has been proposed to learn the
safe control policy in the presence of unsafe operation regions
[27], [28]. SRL-based approximate optimal planning method
in presence of moving obstacles is investigated in [29], where
the quadcopter plans the optimal path and avoids moving
environmental obstacles. In [30], barrier function-based state
transformation is utilized to design safe control policies.
Integrating the control barrier function with reinforcement
learning [31], [32], SRL has been investigated to learn the
safe control policy with unsafe no-entry regions. However, the
existing SRL methods are limited to single-agent or simple
systems, and the interconnected leader-follower system is not
considered, due to the challenge of dealing with complex
interconnected leader-follower systems with moving obstacles.

The follower agents from the interconnected system always
act as lower-level executors, which track the leader’s planned
motion. However, due to limited sensor capabilities or process-
ing speed [33], [34], the followers may not have the capability
to detect and avoid environmental obstacles, which increases
the risk of collisions and accidents [35]. To address this issue,
specific constraints are required to be implemented to ensure
the safety of the follower agent. In [36], [37], RL-based
finite time optimal controller is investigated for the complex
interconnected system, which ensures the terminal constraints
within finite time bounds. To ensure tracking errors satisfy
specified constraints, prescribed performance control (PPC)
method have been widely studied [38]-[40]. In [39], a data-
driven PPC scheme is proposed for the optimal tracking con-
trol of unmanned surface vehicles, where the tracking perfor-
mance is guaranteed by the prescribed constraints. Literature
[41] investigates the prescribed performance event-triggered
control for the interconnected multi-input system, where the
tracking error is constrained within the prescribed performance
bounds. To deal with the spacecraft attitude tracking control
problem, RL-based PPC for saturated actuator spacecraft is
proposed in [42], [43], where the attitude tracking error of
spacecraft is constrained within the prescribed performance
bounds.

Motivated by the above challenges posed by navigating
complex environments for the interconnected leader-follower
system, a hierarchical safe reinforcement learning with pre-
scribed performance control (HSRL-PPC) for leader-follower
systems is proposed. Contributions are summarized as follows:

1) The HSRL-PPC scheme is proposed for leader-follower

systems operating in complex environments with moving
obstacles. In this hierarchical structure, the leader agent
detects environmental obstacles and plans optimal avoid-
ance paths, while the follower agent tracks the leader
within strict performance bounds. This approach offers
advantages over existing hierarchical schemes [14], [16],
[18], [20] by integrating obstacle avoidance with pre-

scribed performance tracking in a unified framework.

2) For leader safe optimal path planning, a StaF NN-based
SRL approach is developed to efficiently approximate
the leader’s optimal value function. This technique en-
ables faster convergence with reduced computational
requirements in complex environments compared to
traditional RL methods [31], [39]. For follower tracking
control, we implement PPC that ensures position mainte-
nance within defined constraints during obstacle avoid-
ance maneuvers, providing tighter tracking guarantees
than conventional methods [9], [44]. These guarantees
are essential for safety-critical applications like landing
or docking operations requiring high precision.

3) Effectiveness of proposed HSRL-PPC scheme is vali-
dated by two simulations and two hardware experiments
featuring a quadcopter-vehicle system. The hardware
implementation demonstrates real-world applicability,
showing the leader vehicle successfully plans optimal
paths around obstacles while the follower quadcopter
maintains tracking within prescribed performance.

The paper is organized as follows: Section II introduces
interconnected system. Section III formulates optimal safe
control problem. Section IV presents the HSRL-PPC scheme.
Sections V and VI provide simulation and hardware experi-
ments to verify effectiveness. Section VII concludes the paper.
Notation: R" is the n-dimensional Euclidean space; R™*"™ is
the set of m x n real matrices; ||z|| is the Euclidean norm of
vector x; I,, is the identity matrix of size n.

II. PRELIMINARIES

A. System description

The interconnected leader-follower system is composed of
upper-level leader agents and lower-level follower agents. The
leader agents work as motion planners to detect the obstacles
in the environment and plan the trajectories, and the follower
agents function as bottom executors of detailed duties, which
cannot detect obstacles due to the lack of environmental
sensors. Consider single leader and single follower with the
following nonlinear affine input dynamics:

@i(t) = fil@(t) + gi(za(t))w(t) 0

Ep(t) = frap(t)) +gp(zp(t))us(t)
where ; € R™, xy € R™ denote the states of the leader
and the follower, respectively, u; € R™, uy € R™/ denote
the control inputs, f; : R™ — R™, f; : R" — R" denote
the drift dynamics, and g; : R™ — R™*™ g; : R* —
R"™#*™s denote the control effectiveness matrices. The leader
and the follower are connected by a communication channel,
which transmits the real-time state information of the leader to
the follower. Assume that the communication channel is ideal,
i.e., the leader’s state information can be transmitted to the
follower without any delay or loss. For the follower, to track
the leader agent, the leader’s state information is assumed to be
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the desired state. The tracking error is defined as e = x ¢ — x;.
The tracking error dynamics is given by:

&(t) =a5(t) — a1(t)
=fr(xy) — filz) + gp(zp)uy —g(z)w ()

Note that the leader’s objective is to stabilize system (1) while
avoiding obstacles, while the follower’s objective is to track
the leader by dynamics (2) within prescribed performance
bounds. In the environment, moving obstacles can be detected
by the upper-level leader agent, but remain undetectable to
the lower-level follower agent. With M avoidance obstacles
in the environment and M = {1,---, M} denoting this set,
the moving obstacles follow nonlinear dynamics:

iOyi(t) = go,i(xo,i(t))v ieM 3)

where z,; € R™ ¢ denotes the center states (or position in
general) of the i-th obstacle, g, ; : R"* — R™°¢ denotes the
smooth drift dynamics of the i-th obstacle, which is equivalent
to zero when the obstacle is static.

B. Obstacle modeling

In this subsection, the modeling of moving obstacles and the
definition of barrier function are introduced. To differentiate
the emergency of the operation space near a moving obstacle,
the nearby space of the moving obstacle is modeled as a
layered sphere, which is composed of three different regions
with different levels of danger: detection region, warning
region, and obstacle region.

Assumption 1 (Obstacle modeling). For obstacle modeling,
the following assumptions are made:

1) Obstacles are non-overlapping moving entities; any
overlapping obstacles are modeled as a larger obstacle.

2) Each obstacle is represented by a minimum enclosing
sphere, with the sphere radius defining the avoidance
boundary condition.

3) The i-th obstacle O; is characterized by center point p, ;
and radius r, ;, with M total obstacles in environment.

Define real-time distance between the i-th avoidance obsta-
cle and the leader agent as d;(z;, Zo,t) = ||i(t) — 20, (t)]-
To facilitate the avoidance of the obstacles, we define the
avoidance region as the set of the states where the distance
between the states and the i-th avoidance obstacle satisfies
di(xy, ®o,4,t) < 7;. The avoidance regions are composed of
three regions with different levels of danger:

1) Detection region D = U;c pD;: the set of regions where
the leader can detect the ¢-th moving obstacle:

D; = {x; € R"|Ro; < di(x1,Tos4,t) < Do}

2) Warning region W = U,;e pmW;: the set of regions where
the leader agent is required to take actions to avoid the
further approaching, which is defined as:

W; ={z; € R"|ry; < di(x1,204,t) < Ro i}

3) Obstacle region O = U;c pO;: the set of regions where
the leader agent is required to take immediate actions to
avoid the collision from obstacle, which is defined as:

O; = {x; e R"|di(x1,20,4,t) <704}

where 1, ;, R, i, D, are the radius shown in Fig. 1 for the
1-th obstacle, which satisfy r, ; < R, ; < D, ;. The avoidance
region is defined as the union set of all the defined obstacles,
which is denoted by A = U;e pm(D; UW; U O;).

Detection Region D;
Warning Region W;
Obstacle Region  0;

i-th moving obstacle

Detection Radius D, ;
Warning Radius R, ;
Obstacle Radius 7,

Fig. 1. The obstacle avoidance region.

C. Safe operational region modeling

To guarantee the safety of system (1) while existing moving
obstacles, it is necessary to establish a safe operational region
to avoid moving obstacles. Therefore, the definition of the
forward invariance of the operational region is given:

Definition 1. (Forward invariance of operational region [32]).
Consider a subset region C C R™ of leader agent’s opera-
tional space. C is forward invariant if for any initial state
x1(0) € C, trajectory x;(t) remains within C for all t > 0.
Region C is called safe operational region. Define C as:

C= {.%‘l S Rm‘h(flil) > 0}
aC = {a1 € R™|h(z)) = 0}
Int(C) = {x; € R™|h(x;) > 0}

where h(x;) is a continuously differentiable function, with OC
and Int(C) denoting the boundary and interior of C.

To keep C forward invariant while exploring the leader
agent’s operational space, it is essential to ensure h(x;(t)) >
0,Vt > 0. Therefore, the control barrier function is introduced
to design safe control policies, which keeps the leader remain-
ing in the safe operational region.

Definition 2. (Control barrier function [22]). For dynamic
(1), there is a differentiable smooth function B(x;), which is
said to be a control barrier function (CBF) if satisfying:

1 1
—— < B(z)) L ——~
arh(xy) — (@) = agh(xy)
B(z;) >0, lim B(z) =00

J:L—>56

s.t. inf
zEInt(C)

where o, ao are positive constants.
Consider the control barrier function in the following form:

KBS(SCZ)

B(z)) = W)

“4)

Authorized licensed use limited to: Xian Jiaotong University. Downloaded on August 09,2025 at 04:06:12 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Automation Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TASE.2025.3596912

JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

where h(x;) = 3 ;cpqhi(z) and s(x;) > iem Silxr)
are continuously differentiable smooth functions, Kp, p are
positive constants, and s;(x;), h;(z;) are continuously differ-
entiable smooth functions for each 7 € M, which satisifies:

hi(z1) =di(21, o5, t) — Toy
0, d; > 74,
d?—D? |
Zl + l]_ COS(Wﬁ), Roﬂ; < dz < Do,ia
si(@) = &2
ly + 13 co8(Tgr—2-), 1o < di < Ro i,
17 dz < To,is

(&)

where d; is the simplified notation of d;(x;, o, ), l1, l2, and
l3 are the parameters to adjust the smoothness of the barrier
function, which satisfy lo + 13 =1, lo — I3 = 2I;.

Remark 1 (Multiple Obstacle Handling). For multiple obsta-
cles, we treat obstacles as non-overlapping entities, with over-
lapping ones modeled as a single larger obstacle (Assumption
1). Control barrier function B evaluates the combined effect
of all detected obstacles, while the smooth detection function
si(x1,T0,i) dynamically prioritizes based on proximity. This
design prevents the limitation where lim,, ,oc B(x;) # oo
when evaluating obstacles independently.

III. PROBLEM FORMULATION: THE OPTIMAL PRESCRIBED
PERFORMANCE SAFE CONTROL

To ensure system (1) safety, the leader must detect moving
obstacles and plan optimal avoidance paths, while the follower
track the leader within specific constraints to ensure precise
landing or docking operations. Considering both safety and
tracking performance requirements, this section formulates the
optimal prescribed performance safe control problem.

A. Leader-follower prescribed performance control

In this subsection, PPC is introduced for follower tracking
leader within constraints. First, definition of performance
bounds is given:

Definition 3. (Performance Bounds [38]). A smooth decreas-
ing function p;(t) is called a performance bound if it satisfies:

lim p;(t) = pico,

li () — o

Hm lim p;(t) = pio,

where pig > picoc > 0,4 = 1,--- ,ny are parameters for the
i-th performance bound.

To guarantee that the tracking error between the leader and
the follower satisfies a specific constraint & ; < e; < &, ;, the
performance bounds are designed as:
i=1,--- (6)

pi = (pio — Pioo)e_’\”t + Pico; s Nf

where J\; is the decay rate of the ¢-th performance bound.
Then, the lower and upper performance bounds of the i-th
tracking error could be designed as & ; = —(p; and &, ; =
Cpi, where ¢ € (0,1) is a user-specified parameter to adjust.

Based on the design of performance bounds, the tracking error
is transformed using the following transformation:

T 26— & —Eui
s =tan = x bt Tl 7
‘ " (2 Eui —ELi ™
Eui — Ei Eri+Eui

e; = Sut 7 i o retan (ei) + % (8)
where €;,7 = 1,--- ,ny is the i-th transformed tracking error.
Then the dynamic of the i-th tracking error is transformed as:

. Oe; . Oe; - Oe; - Oe; .
€ = 876:-(% + @gl,i + szguz = aie:ei +@ )
where 9% = msec? (g X 72515_81_56;ub)/(25u1 —2&14),

o, = aag—lsl + %Suz = 1,2,--- ,ns. Subsequently,
the overall tracking error dynamic is transformed as:

e=He+ (10)

where H = diag([De1 /ey, ..., Oen, [Den,]) € RM ™, & =
[@1,..., P, ] T € R™.

Remark 2 (PPC vs. Robust and FT Control). In real-world
applications like quadcopter landing or spacecraft docking op-
erations, unpredictable disturbances can cause tracking errors
to exceed safety bounds. Compared to robust control [16] and
finite-time control approaches [9], [37], PPC provides tighter,
more accurate tracking guarantees by enforcing prescribed
performance bounds throughout the entire operation.

Remark 3 (Ensuring Initial PPC Boundary Conditions). En-
suring initial tracking error satisfies e(0) € Q. is critical for
PPC implementation. We employ three practical strategies:
(1) a brief initialization phase with a preliminary controller
to establish boundary conditions; (2) adaptive performance
bounds & ; and &, ; with adjustable parameter ¢ € (0,1); and
(3) a pre-learning phase for neural network training before full
controller activation. These approaches were successfully vali-
dated in our quadcopter experiments, demonstrating reliability
even under challenging initial conditions.

Accordingly, the dynamics of the interconnected leader-
follower system, the dynamics of the tracking error and the
dynamics of the moving obstacles are augmented as:

X(t) = F(X(t) + G(X(£)U(t)

(11)
where X = [z1,¢", 2], ...,x) T € Rutns+Mxno g the

augmented state, U = [ul—r,u}, O1xnr] | € R™AMs+M g the
augmented control input, and

Sulzi(¢))
H (fr(zs(t) = filmi(t))) + @
F(X(t) = foa(wo,1(1)) (12)
fo.nr (o 01 (t))
gi(xi(t)) Onyxng On,x
G(X(1) = | —Ha(z(t)) Hgr(xs(t) Onpxar| (13)
0M><nl 0M><nf 0M><M

Through tracking error transformation, the problem of optimal
prescribed performance safe control is formulated. For system
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(1), our goal is to design optimal control input U(t) with
two components: one for the leader to plan optimal obstacle-
avoiding paths, and another for the follower to track the leader
within specific performance constraints.

B. Problem formulation

Based on the augmented dynamics (11) of the intercon-
nected leader-follower system, a quadratic cost function can
be defined for the optimal prescribed performance safe control:

J(X,U) = / T (X (7). U()) dr

o

(14)

where the saturated control input U(t) satisifies fimin; <
Ui(t) < fimax,is Bmax,i = —fming = [ are the symmetric
saturation constraints of the control input. The instantaneous

reward function (X (7),U(7)) is given as:

r(X,U) = 2] Qu,z1+€ Qe + ®(U) + By, )

M
+si(wn, 20T i Qu, Tosi

i=1
where Q. € R™*™, Q. € RWX™, Q,, , € RMeiXnod
are positive definite state penalty matrices for the leader, the
transformed tracking error of the follower, and the state of
moving obstacles, respectively. In the penalty term of moving
obstacle state, the smooth function s;(z;,z,;) from (5) is
utilized to facilitate the avoidance of the obstacle when the
obstacle is detected. B(z;,x,) is the control barrier function
defined in (4). ®(U) is the penalty of the control input [34]:

15)

U
B(U) = 2R [ (e~ /i) A6 (6

where R € RUmi+ms)x(mitmy) jg 3 positive definite control
input penalty matrix. p = [p1, g, - - ,uml+mf]—'— is the satu-
ration value of the control input, (i is an integral variable. To
construct the optimal prescribed performance safe controller,
it is desired to obtain the optimal value function:
VHX) = | e an
t

min
U(r)eQu
where Q€ R(mut+ms)x1 i the admissible set of the control
input. To obtain the optimal value function (17), the Hamilton
function is introduced:

H(X,U,VV*) = (X, U)+(VV) T (F(X)+G(X)U) (18)

Following the extreme condition of the value function (17)
and the Hamilton function (18), the optimal control input could
be given as:

U*(X) = —p tanh (Jrlc:T (vvE(x)T /(Qu)) (19)

Combining the optimal control input (19) with the Hamilton
function (18), the HIB equation is obtained as:

0=r(X,U")+(VV)(F(X)+ GX)U") (20)

The saturated optimal control input (19) and the corresponding
optimal value (17) could be derived by solving the HIB
equation (20). The problem of optimal prescribed performance

safe control is formulated. The next section will introduce a
hierarchical reinforcement learning control scheme to solve
the optimal prescribed performance safe control problem.

Remark 4 (Obstacle State Penalty). The obstacle state penalty
term Zi\il si(xy, xo,i)xliQmoﬁixo,i in the reward function
provides several benefits: (1) it enables the leader to anticipate
obstacle movements for proactive planning; (2) it encourages
maintaining safe distances even when obstacles aren’t immedi-
ate threats; and (3) by using the detection function s;(x;, %o ;)
as a weight, the controller prioritizes relevant obstacles based
on proximity. This creates a graduated response from distant
awareness to active avoidance, producing more efficient nav-
igation compared to binary safety constraints alone.

IV. HIERARCHICAL SAFE REINFORCEMENT LEARNING
WITH PRESCRIBED PERFORMANCE CONTROL

The optimal prescribed performance safe controller (19) is
designed by solving the HIB equation (20), which yields the
optimal value function (17). However, it is difficult to obtain
the optimal value function in practice, due to the nonlinearity
of interconnected system dynamics and moving obstacles. To
address this issue, the HSRL-PPC scheme is designed.

A. Design of hierarchical reinforcement learning

In this subsection, optimal value function (17) is separated
into two parts: the optimal value function of the leader agent
V,*, and the optimal value function of the follower agent VJZ‘ s
which meet the following conditions:

V"= min /OO (ri(X(7),w /(7)) dr 20
UL(T)EQul t
vi=,min [ edXO e e

where 7(X,u;) = aclTlexl + ®(w) + B(z,z,) +
Zi]\il si(xl,xw)xli@%,ixo,i is the reward function of the
leader agent, 77 (X, us) = €' Qce+Ps(uy) is the reward func-
tion of the follower agent, ®;(u;) = <I>([ul—'—,0(mf+M)X1]T)
is the penalty term of the leader agent’s control input, and
®p(ug) = D([0pmyx1,uf,00x1]") is the penalty term of the
follower agent’s control input. To approximate the optimal
value functions for both agents, we utilize distinct neural
network approaches. For the leader agent, traditional training
is challenging due to sparse safe navigation data and obstacle
complexity. We implement a state-following neural network
(StaF-NN) [28], [29] that efficiently extrapolates training data
to neighboring states, accelerating learning in complex en-
vironments. Using this approach, the leader’s optimal value
function and control input are formulated as:

Vi (@) =W, @i, elan)) + Bla, @) + e(m)  (23)
R T
uj (z;) = — p tanh (lzjl (V! (w1, c(2)) W,
+VB(z1,7,) + Ver)) (24)

where W, € R"# is the ideal weight of leader’s StaF NN,
wi(zr, c(z;)) € R™ is the kernel function of the StaF NN,
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ny, is the number of the kernel functions, c(x;) € (B, (z;))"#
is the center with neighboring states of the kernel function,
B(xy, z,) is the control barrier function defined in (4), €;(x;) is
the approximation error of the leader’s optimal value function.
Furthermore, by employing the NN, the optimal value function
and control inputs of the follower agent are approximated as:

Vi(e) =W( pr(e) +e5(e)

R—l T
u}y(€) = — ps tanh (fgf

(25)

2 (Vi ()W + Ve f)> (26)
where Wy € R™7 is the ideal weight of follower’s NN,
() € R™7 is the kernel function of the follower’s NN,
Ny, is the number of the kernel functions, ey(e) is the
approximation error of the follower’s optimal value function.
The ideal weights W; and W are unknown in practice. The
actor-critic NN structure is employed to estimate the optimal
value functions and the control inputs, respectively:

27)

Vilz) =W, i1, e(m1)) + Blai, z,)
(28)
1

Vi () =W/ .0 (e)
R T R
iy (x;) =— py tanh (1291 (Vgp?(xl)VVl,a—f—VB(xl, xo)>)
Hi
(29

(30)

where VVl,C € R%, Wf’c € R™#r are the estimated weights of
the critic NNs. lea € R, Wf,a € R"s are the estimated
weights of the actor NNs. Then Bellman errors are generated
by integrating the estimated value functions (27) (28) and
control inputs (29) (30) with the Hamilton function (18):

81 (1, Wie, W) =ri(a0, (1, Wia))

+ (Vo (a1, e(wn) Wie + VB) !

% (F(aw) + Gi(w)in(a, Wia)) - G1)
S(€, Wes Wra) =r (et (e, Wr.a))+ (V%I (e)Wf,¢> !

x (Ff(€) +Grle)ag(e, Wf,a)) (32)

where Jl(xl,l/f/l,c,ﬁ/l,a) and 0y/(e, Wf,c,Wf,a) are the Bell-
man errors of the leader and follower agents, respectively.
By utilizing the Bellman errors to update the weights, it
can train the actor-critic NNs in an online manner. Then the
trained actor-critic NNs could be used to obtain the optimal
prescribed performance safe controller Fig. 2 illustrates the
developed structure of the HSRL-PPC scheme. The leader’s
value function Vj(x;, z,) includes follower’s tracking error e,
while the follower’s value function Vy(e, z;) depends on the
leader’s state. This creates a coordinated framework where the
leader plans paths considering follower’s capabilities, and the
follower optimizes control to maintain prescribed performance
bounds relative to the leader’s trajectory. This information flow
enables agents to anticipate each other’s behavior during both
planning and execution

High-level: optimal safe Interconnected

motion planning [ ) ‘ leader-follower
————— Obstacle detection
Moving i
obstacles o

[

_____ [
[ *t
[

(VB,,2,%1)
ST ot A ‘ w Leader
i| Leader Critic NN | Leader Actor NN _W "’
@7 ‘ (29)
i | Follower Critic NN Follower Actor NN u, | Follower
{ (28) (30) IR
3% / \e 7
A K

€ ERE
trans (7) |

Low-level: prescribed
performance tracking

Fig. 2. Structure of the proposed HSRL-PPC scheme for leader-follower.

Remark 5 (Real and Virtual Leader-Follower Agents). In tra-
ditional hierarchical control schemes, leader-follower struc-
tures typically exist in two fixed arrangements: (1) virtual
leaders paired with real executor followers [18], [20], or (2)
real-world leader-follower pairs where leaders have superior
capabilities [14], [16], [17]. However, these approaches are
often not interchangeable. Our proposed HSRL-PPC algorithm
1 provides a general and flexible control scheme for intercon-
nected leader-follower systems, accommodating both virtual
planners and real-world executors as leaders, making it more
adaptable for diverse practical applications.

Remark 6 (Value Functions Coupling). Hierarchical struc-
ture implements coupling between agents where the leader’s
decisions influence the follower’s policy and vice versa. The
leader’s value function includes follower tracking error while
the follower’s value function incorporates the leader’s state.
This bi-directional dependency enables coordinated behavior
where the leader plans paths considering follower capabilities,
while the follower maintains prescribed performance bounds
relative to the leader’s trajectory. This coupling is essential
for effective performance in interconnected systems.

Remark 7 (Complementary Constraints). Our approach sep-
arates constraints across system levels: barrier functions for
the leader’s obstacle avoidance and PPC for the follower’s
tracking. This hierarchical design, together with control effort
penalties ®(U) in the reward function, prevents excessive
control actions. Experiments in Section VI confirm this effi-
ciency, showing 5.25% lower control effort compared to un-
constrained approaches while maintaining safety guarantees.

B. Online value function approximation

In this subsection, weights of actor-critic NNs are updated
online through the minimization of the Bellman errors. To up-
date the weights of the leader agent’s actor-critic NNs, a state
extrapolation approach is employed. This approach involves
simulating a collection of neighboring states {z¥}_,, (zF €
B,.(z;(t))) of the kernel function. The extrapolated control
input of the leader agent is derived as:

_ 1gl-|—

R
aF (t) = —p; tanh (l2

m” (V(pl—r (xf)Wl’a—i-VB(mf, a:o)))
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where z§(t) € B, (z(t)),k = 1,2,--- , N, are the neighbor-
ing states of the kernel function. The extrapolated control input
is utilized to simulate the neighboring bellman errors of the
current state, as specified by:

08 (t) = rlat i)+ (Vo] (afelwn)) Wi + VB(af20))
x (Fy(zf) + Gi(xf)ay) (33)

Then the dataset of the leader’s extrapolated states
could be obtained, i.e. {@;(t), 8, (t), {aF(t), 6F ()}, }, where
{aF(t),5F(t)} is the k-th extrapolated data collection. Dif-
ferent from the leader agent, the dataset of the follower
agent’s states is collected without extrapolation but stored as a
historical stack, i.e. {is(t),dy(t), {@}(t), 57 (t)}21}, where
{@%(t),0%(t)} is the j-th historical stored data collection.
Then the weights of the actor-critic NNs can be obtained by
minimizing the squared loss function given as:

N
Bi=6()"6() + > _of@)Tof (1), i=1.1 (4

To minimize the loss function (34), a concurrent-learning-
based update law is employed to update critic NNs weights:

Ty 00
WﬁWmU+U

N
N 1 c2 Z k(t)

-1 f“ (t) +1)
where ki > 0,(i = l,f, j = 1,2) are the learning rates
of critic NNs, and functions oy = Vo, (21, c(z1))(fi(x) +
gl(ffl)ftl(x_g))’ o = VSDlT(fff“aC(iﬂz)_)(fl(mf)T+‘91($f€)ﬁf),
of = Vi ()(fr(e) +gr(e)is(e)), o = Vs () (f(eh) +
gr(e)i f) For the actor NNs, to update the weights while
keeping bounded, a gradient law with projection is employed:

—Wi,c)), =1 f

where k; , > 0,i = [, f are the learning rates of actor NN.
F; € R™"»1*™e1 i =, f are constant positive definite matrices
for the update of the actor NNs. Proj(+) is a projection operator
to ensure that the weights of the actor NNs are kept within
specified constraints [34]. Subsequently, online learning of the
HSRL-PPC is completed. Algorithm 1 illustrates the detailed
procedure for learning the HSRL-PPC.

5 i=1f (35)

Wi = Proj (—kiaFi (Wi (36)

Remark 8 (Extension to Multi-Agent Systems and Complex
Interconnections). Our framework can be extended to more
complex interconnected or multi-agent systems in several
ways: (1) Multiple hierarchical layers where agents serve as
both followers and leaders in a command chain; (2) Heteroge-
neous agent teams with different dynamics and capabilities us-
ing adapted performance bounds; (3) Various communication
topologies including directed graphs and time-varying net-
works, and (4) Human-in-the-loop integration where operators
provide high-level commands within the hierarchical structure.
While these extensions would require modified stability analy-
sis, the core safe guarantees would remain applicable across
more complex multi-agent configurations.

Algorithm 1 HSRL-PPC Scheme
1: Initialize the weights of the leader and the follower agents’
actor-critic NNs, VAVZ’C, VAVl’a, Wfﬁc, Wfﬁa. Set up the online
learning parameters and the termination condition depg.
while ||z;|| > dena do
Collect current state data xl(t) xs(t), zo(t).
Execute control inputs 4,;(t), @y (t) from (29)-(30).
Compute Bellman errors ¢6;(t), d¢(t) from (31)-(32),
and the extrapolated Bellman error 6 (¢) from (33).
Update critic NNs by concurrent learning law (35).
: Update actor NNs by the gradient projection law (36).
8: end while

C. Stability analysis

In this subsection, the closed-loop system states [z, ,e"]T
and the actor-critic NN weights errors is proved to be ultimate
uniform bounded (UUB) under the control of the proposed

HSRL-PPC scheme. First, three assumptions are given.

Assumption 2. The following assumptions are given for the
optimal prescribed performance safe control problem:

1) On a tight set X € x € R"™, both F(X) and G(X) are
Lipschitz continuous with F(0) = 0, and G(X) satisfied
bounded condition ||G(X)|| < Gy for all X € x.

2) Cost matrix Qu, and Ry (i = f,1) are bounded, such
that Ao ; < [|Qqll < 0. Api < IRl < AR.i, where
constants AQ,i,ARJ >0 and A\g i, Ari > 0.

Assumption 3. Assuming that the following parameters
and operators are bounded: ||W;.|| < Wy, [|[Wye|| <
Who, o)l < onr, [lof(zp)| < om [[Vou(z)]| <

op,u1, ([Vog(xs)| < opma ez c(x))] < ew,
Vi (i, (@)l < op.a les(@p)ll < wme IVer(zs)ll <
ep,m2 lla(@)| < em [[Ve(z)| < epm llep(zp)ll <
ez, |Ver(zy)l < ep,me.

Assumption 4. Assuming that the online collected and ex-
trapolated data set for the weights update law satisfies the
following excitation condition:

t+T : X T
Vil < / (UI(T)UI(T)) dr, i=1,f
t pi(T)

1 Lotk .
=Yy Al ) i=f (37
(N;_l Ko ) i=h 6D

where p; = (oy (t)o;i(t) + 1)2 pf = (of(t) "ol (t) + 1)2, and
at least one of nonnegative constants V1 3,92 ; is positive.

inf

Vol <
tethto

To simplify the analysis, the approximated Hamiltonian
error d;, i = [, f, or Bellman error, is abbreviated to the
following form:

. 1. B
0j= *UIcWi,mLZWi,aGi,oWi,a +Ai+ &, i=1f (38)

- 1 -~ -
oF=—(oF) T Wia+ fWi,aGﬁ,Wi,a +AF i=1f (39
where Gi» =V, giR; "9 V!, GE =V giR; g V! .
According to the assumption 2 and 3, &; g is a bounded resid-

ual with respect to the construction error €, and A;, Af € R™
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TABLE I
THE PARAMETERS OF THE LEADER-FOLLOWER SYSTEM.

Example ‘ Initial conditions ‘ Controller parameters | Barrier function parameters | Weights update parameters
2(0) = [2.3]7 Ry =1I2,Rf = 1I> Kp=1up=05 ki1 =kfe1 =05
Example 1: ’ Ql = 13, Qf = 201> Ly = 0.3, Ly =0.8 kl,cQ = /Cf762 =0.1
Nonlinear leader-follower uy =0.5,up =15 L3 =0.2,7,=0.2 klo=1kfqa=1
system z¢(0) =[2.5,2.5]T | pio = 0.6, picc = 0.01 re =0.3,7g =0.4 F =1
A=09, ¢=1 Qx,, =1 Fp=1Is
= I =1 Kg=1,u=0. k —k —0.
Example 2: x1(0) = [2,3] T R 2 Ry 3 B h=05 Lel fer =05
Ql:I37Qf:20[3 L1:0-3,L2:0.8 klcgzkaQ:O.l
Follower quadcopter ’ ’
landing at moving Hy = 0.5,/Lf =15 L3 = 0.2,7’0 =0.2 kl,a = 1, k‘f@ =1
leador vehicle zp(0) =[3,2,1]7 pio = 1.1, pjoo = 0.01 re =0.3,7q =04 F=1I3
A=08 (=1 Qx,, =1 Fy=1Is
35 Leader (HSRL-PPC) @ Leaderstart ~ =-=== Detection range T A Example ] Nonlinear leader—f()llower SyStem
= = Leader (AOC) X Leader end Avoidance range
b e e e e direction 1 Simulation setup: In this example, a representative nonlin-

Y-axis (m)

X-axis (m)

Fig. 3. Example 1: Trajectory of the leader-follower in 2-dimensional space.

are uniformly bounded on x, [|A;]| and ||AF|| decrease as
[IVei|| and ||V,
Based on the design of the controllers (29) and (30), the

following inequality could be obtained:

uf = s]|* < S Wi Wi + Iy, i=1,f  (40)

where >, is a upper bound related to g 1, ©H,2, PD,H1,
©D,H2, OH1, OH2, 0p,H1a0d 0p p2, Wi = Wi — Wi, and
Wi.a = Wi,q — Wi, are the estimated error of the actor-critic
NNs, II,,, is a upper bound related to ep g1 and €p Ho.

The stability analysis of closed-loop system state [IZT, e’
weight errors WLC and V~Vm is given in the theorem 1.

>

Theorem 1. Considering the augmented system (11), as-
sumption 1-4 are satisfied, and algorithm 1 is implemented.
The actor-critic NNs are updated by the adaptive up-
date law (35) and (36). Then the close-loop system states

[:EZT, e'|" and estimated weight errors Wi,c,Wi,a will be
UUB provided that|Z|| HALL/Amin(H), where Z =
T

T T
|::L'l76 9

Proof. Theorem 1 is proved based on the Lyapunov stability
theory. The detailed proof is given in the appendix A. O

Wil Wil WL W

V. NUMERICAL SIMULATIONS

In this section, two numerical simulation examples are
conducted to verify the effectiveness of the proposed HSRL-
PPC scheme.

ear leader-follower system is designed to complete the path-
planning and tracking control task with moving obstacles in 2-
dimensional space. The dynamic models of the leader-follower
system (1) are both selected as nonlinear affine system with
detailed parameters cited from references [29], [32]:

—Tj1 + Ti2
169 s~ otz 27) |
sin (2z;1) + 2 0

gi(i) = [ O) cos (2zi,1) + 2 } i=1F.

Design three moving obstacles O1, Oy, and O3 with the
dynamics described by the following linear systems:

Go1(To1) = 0.0651 [1,1]" ,2,1(0) = [1.6,1.6] "
Go.2(To2) = 0.0655 [1,—1] ", 2,2(0) = [2,1.0] "
9o.3(To3) = 0.0655[1,0]" ,205(0) = [1,0.5]"

where si, 9,53 are the functions defined in (5). For the
actor-critic NNs, the weights are initialized randomly as
lec = lea = rand(n,,, 1), Wf,c = Wf,a = rand(n,,, 1),
where n, = 3, n,, = 3. The leader’s NNs are chosen
as the StaF NNs, with its basis function being chosen as
ou(xi,e) = [er(a,er(m)), a(wr, ca(m)), (@, ea(x))]”
The kernel functions of the basis function are designed as
iz, ci(xy)) = xchi(xl) — 1,7 = 1,2,3, where ¢;(x;) =
z; + di(w;),i = 1,2,3, di(x;) = 0.001v(z;) x [0,1]7,
do(x;) = 0.001v(x;) % [0.866, —0.5] T, d3(x;) = 0.001v(z;) ¥
[—0.866, —0.5]T, and v(x;) = (2] z; +0.01)/(z)z; +1).
The NNs of the follower are chosen in the following form:

[25(1)%, 25 (1) x 2f(2),27(2)%, 2(1)% x 24(2),
zp(1) x 25(2)% 2p(1)? x zp(2)%] .

pf(xp) =

The leader’s task is to obtain the optimal path around
moving obstacles, while the follower is required to track the
leader within the prescribed performance bounds. To control
the leader and follower, the proposed hierarchical controllers
(29) and (30) are employed, and the weights of the actor-
critic NNs are updated online by the law (35) and (36). Table
I shows the detailed parameters designed for the simulation.
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TABLE I
RESULTS OF NUMERICAL SIMULATIONS AND EXPERIMENTS.

Case ‘ PL ‘ RPL ‘ Minimum Distance to Obstacles ‘ Relative Min. Distance ‘ Final

| m) | (%) | MDO; (m) | MDO; (m) | MDOs (m) | RMDO; (%) | RMDO; (%) | RMDO3 (%) | FDTP (m)

Simulation 1 3.98 94.34 0.37 0.28 0.27 186.00 141.54 132.71 7.88e-08
Simulation 2 5.03 114.12 0.36 0.36 0.38 179.74 181.19 190.76 1.04e-06
Experiment 1 46.19 109.19 — — — — — — 0.02
Experiment 2 6.48 137.32 0.31 — — 205.28 — — 0.02
T T T T ' r s 3 o 2
25f g"zs %m
E B Obstacle 3 é : é
2 1.5F ;:) 15 \9_ 1
o5 b}
3 3

)
o
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Fig. 4. Example 1: (a) Position of the leader and distance to the moving obstacles. (b) Position of the follower. (c) Revolution of NNs weights.

PN
= |_eadeer trajectory (HSRL-PPC)

3

Leader start

= = Leader trajectory (AOC)
------ Follower trajectory (AOC)

Leader end
Follower end

o}

== = Follower trajectory (HSRL-PPC) Q Follower start
X
X

25

Z-axis (m)
Y -axis (m)

0.5

[ = Leader (HSRL-PPC @ Leader start ——-=-— Detection range
= = Leader (AOC) X Leader end Avoidance range
= = Follower (HSRL-PPC) @ Follower start Obstacle
-0.5 . Flollower (IIAOC) . X IFollowe:rlend —* Movement direcltion 1
-15 -1 -0.5 0 0.5 1 15 2 25 3
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Fig. 5. Example 2: Trajectory of the leader-follower in 3-dimensional space. ~ Fig. 6. Example 2: Trajectory of the leader-follower in 2-dimensional space.

Result: The main results of example 1 are shown in Fig.
3-4. In Fig. 3, the leader obtains the optimal path and avoids
three moving obstacles. Regarding the follower, it cannot sense
obstacles, and simply follows the leader’s trajectory within
prescribed performance bounds to avoid collisions, while the
comparison AOC method [26], [45] fails to guarantee the
safety of the leader, also the tracking performance of the
follower is not guaranteed. Fig. 4(a) shows the position of the
leader and its real-time distance to three moving obstacles. Fig.
4(b) provides the position of the follower, where the tracking
error is bounded by prescribed performance bounds p;’}** and
pﬁ",i = z,y, 2. Fig. 4(c) illustrates the revolution of the
actor-critic NNs weights.

3. Motion capture cameras

4. Display for monitoring UAV&UGYV operating state
5. WI-FI channel for communication

6. Workstation for HSRL-PPC scheme online learning

Fig. 7. The hardware setup for experimental validation.

moving in *X-Y-Z’ 3-dimensional space. The dynamic models

B. Example 2: Follower quadcopter landing at leader vehicle of the leader-follower system are designed as:

Simulation setup: In this example, the leader-follower sys-
tem is designed to complete a landing task with a moving
leader vehicle. The leader is chosen as a moving vehicle in 3 3
the *X-Y’ plane, and the follower is selected as a quadcopter fr=0sx1, g5 = Isxz, vy € R%up € R, (41)

fi = 0ax1, g1 = Iy, 21 € R?,u € R,
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TABLE III
PERFORMANCE COMPARISON BETWEEN AOC AND PROPOSED CONTROLLER
‘ MSE ‘ Max ‘ Total ‘ Mean Input ‘ Peak ‘ RMS ‘ Cost
Method ‘ X ‘ Y ‘ Total ‘ Error ‘ Energy ‘ X ‘ Y ‘ Input ‘ X ‘ Y ‘ Total ‘ X ‘ Y
AOC 0.0688 0.0644 0.0666 0.5324 5.5964 | 0.1001 | 0.1016 | 0.3299 | 0.1193 | 0.1253 0.1224 | 2.6598 | 2.9352
Proposed PPC | 0.0082 | | 0.0075 | | 0.0078 | | 0.2540 | | 5.3174 | | 0.1054 | 0.0995 | | 0.3445 | 0.1241 | 0.1142 | | 0.1193 | | 2.8789 | 2.4380 |
=° :
== Reference trajectory —— Proposed method AOC method f 2 1 <
% Take-off (proposed) @ Landing (proposed) % Take-off (AOC) 540 Tte_ |
® Proposed waypoints AOC waypoints *
S0
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Fig. 8. Case 1: (a) Trajectory of the quadcopter in 3-dimensional space. (b) Position of the quadcopter in X — Y plane. (¢) Comparison of the tracking error.

(b)

which is a widely used “position-velocity” kinematic model
[9], [29], [32]. Similar to the previous example, the leader
is required to obtain an approximate optimal path and avoid
obstacles, while the follower tracks the leader in prescribed
performances. However, the follower is also required to land
on the leader vehicle in this example. The actor-critic NNs for
the leader are designed as the StaF NNs in the same form as
the previous example. The NNs for the follower are selected
in the following form:

op(zp) = [xp(1)? 25(2)% 25(3)% zp(1) X z4(2),
zp(1) X zp(3),25(2) x 24(3)] .

Result: The main results of example 2 are shown in Fig. 5-6.
In Fig. 5, the leader-follower system successfully completes
the landing task in 3-dimensional space using our proposed
HSRL-PPC method, while the comparative AOC method fails
due to collision. Fig. 6 shows the trajectory in 2-dimensional
space, where our approach guarantees both leader and follower
safety through effective path planning and obstacle avoidance.
In contrast, the AOC method collides with the first moving
obstacle, demonstrating the superior performance of our hier-
archical safe control framework.

To evaluate the performance of the proposed HSRL-PPC
method, several performance indexes are defined: (1) Path
length (PL), which is the approximated optimal path length
of the leader, a smaller value indicates a better performance
of path planning; (2) Minimum distance to the ith obstacle
(MDQ;), a bigger value indicates a safer performance; (3)
Relative path length (RPL), which is the ratio of the follower’s
trajectory length to the leader’s trajectory length, a value close
to 1 indicates a better performance; (4) Relative minimum
distance to the ith obstacle (RMDO;), which is the ratio of
MDO,; to the obstacle radius r;; (5) Final distance to the target
point (FDTP), which reflects the stabilization error to the final
point; The detailed value of the performance index for the
numerical simulations is shown in Table II.

Time (s)

; .
150 250
Time (s)

(©)

L E L
250 50 100 200

V1. HARDWARE EXPERIMENTS
A. Experiment setup

In this section, hardware experiments are conducted to
verify the effectiveness of the proposed HSRL-PPC scheme.
The experiment is performed on a leader vehicle and a follower
quadcopter. The leader vehicle is a 4-wheel drive car, and the
follower quadcopter is an X150 quadcopter. Both the leader
vehicle and the follower quadcopter are equipped with an
RK3566 processor and 4-GB RAM. The real-time position
of the vehicle and quadcopter are obtained by an 8-cameras
motion capture system. The developed controller (29) and (30)
are calculated by a workstation equipped with an Intel i7-
12700 CPU @3.60 GHz. The control inputs are implemented
as velocity commands through 5GHz WI-FI channel.

Case 1: Verification of lower-level PPC of the follower

To evaluate the performance of lower-level PPC, a case of
quadcopter tracking horizontal circle trajectory is conducted.
The circle is set as 74 = [1.5sin(0.2¢), 1.5 cos(0.2¢),1] .

Experiment results: The experiment results are shown in
Fig. 8. Fig. 8(a) shows the trajectory of the follower quad-
copter in 3-dimensional space. Fig. 8(b) provides the position
of the follower quadcopter in the X — Y plane, which shows
that the follower quadcopter tracks reference trajectory within
a prescribed performance. Fig. 8(c) compares tracking error
performance between our proposed method (blue line) and
the approximate optimal control (AOC) method (orange line).
The results clearly demonstrate that our PPC-based approach
maintains significantly smaller tracking errors that consistently
remain within the prescribed performance bounds, unlike the
AOC method which exhibits larger deviations. This confirms
the superior capability of our lower-level PPC controller for
precise trajectory tracking even under disturbances. Detailed
performance metrics are provided in Table II, with comprehen-
sive comparison results shown in Table III. Across multiple
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Fig. 9. Case 2: (a) Weights of the critic NNs. (b) Position of the leader and follower in X — Y plane. (c) Distance to the obstacles and the value of s.
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Fig. 10. Case 2: snapshots of the leader-follower system tracking and landing.

evaluation criteria including mean square error, maximum
error, and control energy consumption, our proposed scheme
demonstrates superior tracking accuracy and disturbance re-
jection compared to the conventional AOC controller.

Case 2: Verification of HSRL-PPC of the leader-follower

To verify the effectiveness of the proposed HSRL-PPC
scheme, a case of the quadcopter-vehicle system is conducted.
The leader vehicle is required to obtain an approximate opti-
mal path and avoid obstacles, while the follower quadcopter
is required to track and land on the leader vehicle precisely.

Experiment results: The experiment results are shown in
Fig. 9. Fig. 9(a) illustrates the revolution weights of the critic
NNs. Fig. 9(b) shows the position of the leader and the
follower in the X — Y plane, where the follower tracks the
leader vehicle within prescribed performance bounds. Fig. 9(b)
provides the real-time distance to the obstacles and the value of
s, which shows the vehicle avoids the obstacles successfully.
The snapshots of the leader-follower system are shown in
Fig. 10, which illustrates the quadcopter landing on the leader
vehicle.

VII. CONCLUSION

An SRL-PPC scheme is proposed for the interconnected
leader-follower system. Considering the different capabilities
and duties of the leader and the follower. Leader in the higher-
level of HSRL-PPC approximates the optimal path and avoids

111

adrotor
ob
‘Quadrotor
7 land point )
=, & 9
o Vehicle end point
‘ehiclef

obstacles. while the follower in the lower-level of HSRL-
PPC tracks the leader within prescribed performances. Actor-
critic neural networks are employed to approximate the value
function and the control input of the leader and the follower.
The effectiveness is verified by simulations and hardware
experiments. The proposed HSRL-PPC scheme provides en-
hanced safety through obstacle avoidance, improved tracking
precision via prescribed performance control, and computa-
tional efficiency through its hierarchical structure. Despite its
advantages, challenges remain in real-world implementation,
including state measurement accuracy requirements, neural
network training demands, and sensitivity to communication
delays. Future work will address external disturbances, model
uncertainties, and extend the approach to multi-agent systems.

APPENDIX

Proof of Theorem 1: The convergence of the HSRL-PPC
algorithm is shown in this appendix. The following Lyapunov
function is chosen:

VL (Zt)=>

R 1o
(Vi* + 5WiLWi,C + §WiLWi,a> (42)
i=f,1
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Then the derivative of V; with respect to time is given by:

V=" (VW (fi + giws) + Wil (Wi = Wia)

i=f,1
~ 1.~ ~
- Wl—,rc <_k1 ('1*' (_01 Wi,c+4W1:;Gi,aWi,a+Ai>)
N
- k of 1 - .
T o i,c2 i - T k
Wie | =75 22 5k WhiaCiloWia
k=1"1
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T i,c2 i -~ .
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(43)

Substitute Bellman errors (38)-(39) into derivative (43)
and employing Young’s inequality and assumptions 2-4, the
derivative can be rewritten as:

hi O 0 0O 0 O
0 hy O 0 0 0
. 0 0 h 0 0 0
<_ 7T 3 _
VisS=Z 1 g 0 by hs 0 o |ZTTHaw
0 0 he O hy O
0 0 0 hgs O  hyg
=—Z"HZ + Ly
\ivhere hi = dgus b2 = Ag s hs = %kl,clgl(t)UlT(t) +
skie2V2ulcy, ha = (ke + kpe)o(t)oy(t), hs =

skpeop(t)of () + ghyeoo rle g, he = —Ieg, he = Igg—
AR Y, I 1, hs = —Ig g, hg = —Ig f + AR f2u,Ir, s, and

2

1 1- -

MarL = Z iki,cl <4Wi—,|:1GJWi,a + &+ Ai)
Py

2
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When a suitable positive definite matrix 7 is chosen, the

closed-loop system state [z, ,¢']" and the network weight

errors Wi ., W; , will end up being UUB when the condition

IZ|| > v/HALL/Amin(H) is satisfied. The proof is completed.
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