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ABSTRACT
This article considers the shared control of bounded rational human behavior with cooperative autonomous machines. For the col-
laboration of humans and machines, it is crucial to ensure the safety of the interactive process due to the involvement of human
beings. First, a barrier-function-based state transformation is developed to ensure full state safety constraints. A level-𝑘 think-
ing framework is exploited to obtain bounded rationality. Every single level-𝑘 control policy is approximated by using adaptive
dynamic programming. Inspired by the theory of human behavior modeling, a probabilistic distribution based on Softmax is
utilized to model human behavior, which imitates the uncertainty of human intelligence in the cooperative game. Through the
construction of a shared control framework, the control inputs of humans and machines are blended to achieve stabilization safely
and efficiently. Finally, simulations are implemented to test the effectiveness of the proposed cooperation architecture. The result
demonstrates that full-state asymmetric constraints and stabilization are guaranteed in commonly safety-critical situations, and
the shared control framework ensures the safety of the overall system when one of the participants is not safety-aware.

1 | Introduction

Human–machine fusion decision is a rising topic in the field
of safety-critical system control [1–3]. For safety-critical sys-
tems, there exist many complex, and asymmetric constraints
for the safe operation of the system. These constraints chal-
lenge human beings to ensure the safety of the whole system
due to the irrationality of human decision-making. By utilizing
the human–machine cooperation control scheme, autonomous

Abbreviations: ADP, adaptive dynamic programming; HJI, Hamilton-Jacobi-Isaacs.
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

© 2025 John Wiley & Sons Ltd.

machine can gather enough information in a relatively short
period to manage the crisis quickly and effectively. However,
the question of to what extent and when machines are trusted
by humans remains to be resolved. In recent years, game-based
systems have gained significant interest due to their extensive
usage in various fields, including economics, robotics, automated
driving, and cyber-physical-systems [4–7]. The objective for both
humans and machines in the collaboration is the same, which is
to stabilize the whole system efficiently and safely.
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1.1 | Related Work

To ensure the safety of the human–machine collaborative stabi-
lizing control process, one safe adaptive dynamic programming
(ADP) approach involves interactions between agents and the
environment to learn the optimal controller [8–10]. Safe ADP
includes mechanisms designed to guarantee that specific safety
constraints are satisfied. Literatures studied multiple ways to
improve the performance of safe ADP while ensuring safety.
In [11], an adjusted policy iteration framework combined with
control barrier function is proposed to deal with both state
constraints and input saturation. The authors of [12] introduce
a novel structure that combines actor-critic-identifier to identify
system dynamics, resulting in enhanced performance in danger
detection. A safe-guaranteed controller is proposed to pre-
vent the state trajectory from causing collisions with non-convex
boundary limits in [13]. In [14], a barrier-function-based transfor-
mation is proposed, which converts safety issues to stabilization
problems to meet the full state constraints of a rectangular.
In [15–17], the barrier function is integrated into the reward
function to penalize the behavior of reaching the boundary.
The barrier Lyapunov function-based safe ADP is investigated
in [18] and [19], with application to the tracking control of the
four-wheel vehicle. In [20], an end-to-end safe learning-based
control framework is developed that uses an auxiliary system
for approximation. Human beings are often involved in the
control process of safety-critical systems; however, due to the
vulnerability of human beings, how to ensure safety constraints
strictly should be considered [21].

In the interaction process of cooperative human and machine,
modeling human performance with irrationality remains an
open challenge. In recent years, the theory of cognitive hierarchy
has gained prominence to imitate the hierarchical structure of
human thinking. In [22–24], learning-based method through
solving the non-equilibrium game is developed to learn the
cognitive hierarchy online, which achieves stabilization with-
out acquiring system dynamics. The work of [25] proposes a
cognition-modeling game architecture incorporating unmanned
aircraft into the airspace system. In [26], the bounded-level
reasoning structure is proposed to predict the decision-making
process of human beings, which is constrained by the lim-
ited rationality of their beliefs. To learn the decision process
of the human brain, a complementary learning approach is
proposed in [27], which simulates different functional areas of
the human brain. In [28, 29], the cooperation game of humans
and self-driving vehicles is investigated to achieve collaborative
human-vehicle decision-making. Additionally, the Softmax func-
tion from [30] is utilized to replicate the stochastic distribution
of various levels of human behavior, based on the concept of
bounded rationality [22, 31]. Bayesian inference is often used
to infer the intent of natural humans by deriving probability
distributions for different levels of human intelligence [32–35].
Therefore, bounded rationality is a promising approach to mod-
eling irrational human behaviors However, the integration of
the irrational human model and autonomous machine in the
cooperative game remains an open challenge.

Human–machine cooperation enables the system to work
under the guidance of human consciousness while reducing the

mental and physical burden of humans in performing work by
automating the operation of machines [36, 37]. By calculating the
confidence of the human and machine, the shared control archi-
tecture allocates autonomy and mixes inputs from the human
and machine [38, 39]. Data-driven controller design is a powerful
tool for solving human–machine cooperation problems where
information of the model is always unavailable. In [40] and
[41], the inner–outer loop ADP-based controller is investigated,
which improves the performance of the robotic manipulator
through the interaction of human guidance. For autonomous
driving, human-vehicle collaboration has become an essential
research point. Human intervention in automobile-assisted
driving is vital. In [42], a robust data-driven controller is devel-
oped to improve the reaction performance of the car driver. In
[43], a novel human–machine shared control mechanism is
developed, which takes the form of non-zero-sum games in a
robotic arm. To further investigate more effective interaction
process of human intelligence and autonomous machine, it is
beneficial to develop a learning-based shared control framework
that combines the direct cooperation of human and machine
with the ADP technique.

In this article, a cooperative shared control framework that
blends the input of bounded rational human and machine is
developed, which achieves stabilization control cooperatively. To
obtain irrational intelligence, the level-𝑘 policy of the cooperative
nonzero-sum game is formulated. With the methodology of ADP,
the level-𝑘 policy and value function are obtained by the approxi-
mation of the single critic network. To achieve direct cooperation
between the human and machine, the shared control framework
is introduced to blend the control inputs.

1.2 | Contributions

The contributions of this article are threefold:

1. A safe human–machine cooperative control game is for-
mulated to achieve stabilization control. The coopera-
tive game is developed to integrate human behavior with
autonomous machine inputs. The full state constraints of
the human–machine control system are guaranteed by
a barrier-function-based system transformation. The opti-
mal control policy of the human–machine cooperative
game is obtained by the Nash equilibrium. Compared with
other human–machine cooperative control methods [2,
7, 29, 43, 44], the developed method could achieve safe
human–machine interaction even one of the participants is
not safety-aware, which guarantees the safety of the overall
system.

2. A level-𝑘 rationality architecture is developed based on
the theory of bounded rationality. The bounded rational
behavior is approximated via the online single-critic ADP.
A probabilistic distribution of different intelligence levels
is established, which imitates the time-varying and uncer-
tain property of human being thinking framework. The
proposed method could model the human behavior with
bounded rationality and uncertainty in the cooperative
game, compare with the existing bounded rationality mod-
eling methods [3, 22, 24].

2 of 20 International Journal of Robust and Nonlinear Control, 2025

 10991239, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.7931 by junkai tan - X

ian Jiaotong U
niversity , W

iley O
nline L

ibrary on [24/03/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



3. The framework of human–machine shared control is pro-
posed, which utilizes the technique of linear arbitration to
blend the control inputs of both human and machine. The
shared control framework ensures the safety of the over-
all system when one of the participants is not safety-aware.
The authority of human behavior over the shared con-
trol system is obtained by calculating the confidence of
human intelligence. The proposed shared control system
could achieve stabilization control cooperatively and safely
in the human–machine cooperative game.

1.3 | Structure

This article is organized as follows. Section 2 illustrates the basic
setup for the cooperative human–machine game. Section 3 out-
lines the barrier-function-based transformation system. Section 4
develops a level-𝑘 bounded rationality architecture and utilizes
reinforcement learning to obtain the policies of different levels.
Section 5 models the probabilistic form of human behavior and
develops a shared control framework to blend the cooperative
control inputs. Section 6 verifies the effectiveness of the proposed
method. Section 7 concludes this article.

1.4 | Notations

The following notations are used in this article: ℝ stands for the
real numbers. ℝ𝑛 stands for the real 𝑛-dimensional vectors. ℝ𝑚×𝑛

stands for the real 𝑚 × 𝑛 matrices. ||𝑥|| stands for the Euclidean
norm of vector 𝑥. 𝑥̇(𝑡) stands for time derivative of 𝑥(𝑡). ∇𝑉 (𝑠) =
𝜕𝑉 (𝑠)
𝜕𝑠

stands for partial derivative of 𝑉 (𝑠) with respect to 𝑠.

2 | Preliminaries

2.1 | Human–Machine Cooperative Game

To investigate the human–machine cooperative game, we con-
sider the continuous-time nonlinear affine input dynamical sys-
tem defined as

𝑥̇ = 𝑓 (𝑥) + 𝑔ℎ(𝑥)𝑢ℎ + 𝑔𝑚(𝑥)𝑢𝑚 (1)

where 𝑥 =
[
𝑥1 · · · 𝑥𝑛

]T ∈ ℝ𝑛 is the system state, 𝑢𝑖 ∈ ℝ𝑜𝑖 , for 𝑖 =
ℎ, 𝑚 is the control policy of human and machine, respectively,
𝑓 (𝑥) ∶ ℝ𝑛 → ℝ𝑛 represent the nonlinear dynamics of the coop-
erative system. 𝑔ℎ(𝑥) ∶ ℝ𝑛 → ℝ𝑜ℎ and 𝑔𝑚(𝑥) ∶ ℝ𝑛 → ℝ𝑜𝑚 repre-
sent the input matrix gain of human and machine, respectively.
Note that the control input dynamics matrices of the human
and machine are denoted with two different notations 𝑔ℎ(𝑥)
and 𝑔𝑚(𝑥), respectively, for the subsequent analysis. However,
the actual control input dynamics matrices of the human and
machine could be the same in the real system.

Assumption 1. (Bounded functions [14]). The system given
by (1) satisfies:

1. Function 𝑓 (𝑥) is Lipschitz and bounded, such that||𝑓 (𝑥)|| ≤ 𝑏𝑓 .

2. Functions 𝑔ℎ(𝑥) and 𝑔𝑚(𝑥) are bounded, such that ||𝑔ℎ(𝑥)|| ≤
𝑏𝑔,ℎ and ||𝑔𝑚(𝑥)|| ≤ 𝑏𝑔,𝑚.

Remark 1. Note that with the property given by
Assumption 1, the transformation condition for the following
barrier-function-based state transformation could be satisfied.
Through the barrier-function-based transformation, the finite
state constraints of the original system are mapped to trans-
formed infinite state constraints, so the bounded conditions
of the system dynamics are essential for the feasibility of the
transformation. With the full-state constraints and continuous
nonlinear-affine system setup of this article, where all states are
bounded by finite values, the continues system dynamics 𝑓 , 𝑔ℎ,
and 𝑔𝑚 could be feasibly bounded with finite states.

Blending the human and machine inputs into a hybrid con-
troller and fusing the affine dynamics of the human and machine,
a shared control architecture could be designed. The designed
architecture allocates autonomy based on the confidence of the
inputs. The dynamics of shared control can be defined as

𝑥̇ = 𝑓 (𝑥) + 𝑔𝑏𝑙𝑒𝑛𝑑(𝑥)𝑢𝑏𝑙𝑒𝑛𝑑 (2)

where 𝑔𝑏𝑙𝑒𝑛𝑑 = [𝑔ℎ, 𝑔𝑚] ∶ ℝ𝑛 → ℝ(𝑜ℎ+𝑜𝑚) is a blending dynamics,
𝑢𝑏𝑙𝑒𝑛𝑑 is a blending control input.

𝑢𝑏𝑙𝑒𝑛𝑑 = 𝛽(𝑢ℎ, 𝑢𝑚, 𝑥) (3)

where 𝛽(𝑢ℎ, 𝑢𝑚, 𝑥) ∈ ℝ(𝑜ℎ+𝑜𝑚)×𝑛 is a blending paradigm, which
combines the human input 𝑢ℎ and machine input 𝑢𝑚.

Remark 2. Note that the blending dynamics 𝑔𝑏𝑙𝑒𝑛𝑑 is a vector
of the human and machine input gain matrix, which is used to
blend the control inputs of the human and machine. The blend-
ing paradigm 𝛽 is a function of the human and machine inputs
and the system state, which is used to allocate the authority of
human behavior in the shared control system. The allocation of
the authority of human behavior is determined by the confidence
of human intelligence which is calculated by the arbitration func-
tion defined in the next subsection.

To achieve the cooperation of the human–machine system,
the same performance index for the human and machine is
designed as

𝑐𝑜𝑜𝑝

(
𝑥0; 𝑢ℎ, 𝑢𝑚

)
= 1

2∫
∞

0
𝑟𝑐𝑜𝑜𝑝

(
𝑥, 𝑢ℎ, 𝑢𝑚

)
𝑑𝜏 (4)

where 𝑟𝑐𝑜𝑜𝑝
(
𝑥, 𝑢ℎ, 𝑢𝑚

)
= 𝑀(𝑥) +

∑
𝑗∈{ℎ,𝑚} 𝑢

𝑇
𝑗
𝑅𝑗𝑗𝑢𝑗 is the fully

cooperative reward function of human–machine system, 𝑀(𝑥)
is a quadratic function of state 𝑥.

Definition 1. (Nash equilibrium [45]). Input pair
(
𝑢⋆
ℎ
, 𝑢⋆

𝑚

)
is

the Nash equilibrium, if it satisfies:

𝑐𝑜𝑜𝑝

(
𝑥0; 𝑢⋆ℎ , 𝑢

⋆
𝑚

) ≤ 𝑐𝑜𝑜𝑝

(
𝑥0; 𝑢ℎ, 𝑢⋆𝑚

)
,∀𝑢ℎ (5)

𝑐𝑜𝑜𝑝

(
𝑥0; 𝑢⋆ℎ , 𝑢

⋆
𝑚

) ≤ 𝑐𝑜𝑜𝑝

(
𝑥0; 𝑢⋆ℎ , 𝑢𝑚

)
,∀𝑢𝑚 (6)

The optimal control policy of the fully cooperative
human–machine system is the Nash equilibrium.
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2.2 | Human Behavior Modeling
and Arbitration

Human behavior is characterized by suboptimality and volatility.
According to the literature [30], for behaviors with a probabilis-
tic distribution, the human decision-making mechanism can be
represented by a Softmax function as

Pr
{
𝑢𝑡 = 𝑢𝑘|𝑥} = 𝑒−𝑟(𝑥,𝑢

𝑘)∑
𝑗 𝑒

−𝑟(𝑥,𝑢𝑗 )
(7)

where 𝑟(𝑥, 𝑢) is the reward function similar to 𝑟𝑐𝑜𝑜𝑝 from (4), 𝑢𝑘 is
the 𝑘-th human behavior. The Softmax function is used to model
the probabilistic distribution of human behavior, which imitates
the uncertainty of human intelligence in the cooperative game,
which selects level-𝑘 policies with the probability of the Soft-
max function. As the human–machine system is safety-critical,
the confidence of human intelligence should be considered. The
confidence of human intelligence is calculated by the confidence
function 𝑐(𝑡), which is defined as Linear arbitration is the com-
monly used form of arbitration. The arbitration function of the
shared control system increases as confidence in humans grows,
with a lower bound of 0 and an upper bound of no more than 1.
The specific form of the arbitration function used in this article is
given as follows:

𝛼 =
⎧⎪⎨⎪⎩

0, 𝑐(𝑡) ⩽ 𝜃1
𝜃3

𝜃2−𝜃1
⋅ 𝑐(𝑡), 𝜃1 < 𝑐(𝑡) < 𝜃2

𝜃3, 𝑐(𝑡) ⩾ 𝜃2

(8)

where 𝑐(𝑡) is the confidence to human intelligence, and 𝜃𝑖 with 𝑖 ∈
{1, 2, 3} are the parameters for the arbitration function. The max-
imum of arbitration is 𝜃3, determining the maximum share of the
human influencing overall decision-making. When there is insuf-
ficient confidence in the human, 𝛼 = 0, that is, the human input
is not executed. The blue curve in Figure 1 illustrates the arbitra-
tion functions above. The arbitration function reflects the author-
ity of humans and machines for the overall system under shared
control. When confidence in humans is low, humans do not con-
tribute to the shared control system. When a certain threshold is
reached, human behavior begins to play a role and is proportional
to the amount of confidence, showing a partially linear relation-
ship. When confidence reaches a certain high level, the shared
control system maximizes the allowable level of human behav-
ior and remains. To achieve the objective of stabilizing control

FIGURE 1 | Arbitration function.

of the human–machine system with safety assurance, a cooper-
ative game-based safe shared control framework is developed, as
shown in Figure 2. For the human irrationality modeling, the
level-𝑘 bounded rationality is developed to model the human
behavior, and the probabilistic distribution of human intelligence
is obtained by the Softmax function. To ensure the safety of the
human–machine system, a barrier-function-based transforma-
tion is utilized to transform the state constraints into stabilization
problems. The arbitration function is used to calculate the confi-
dence of human intelligence and allocate the authority of human
behavior in the shared control system.

3 | Barrier-Function-Based State
Transformation

The system state involving human beings should always satisfy
the safe constraints. To ensure safety, a barrier-function-based
transformation system is given in this section.

3.1 | Barrier Function Transformation

In this subsection, we first consider the problem of state con-
straints. To simplify the notation of safety limits, the state
constraints set is given as 𝑥 ∈ , where  = {𝑥 ∈ ℝ𝑛|𝑎 ≤
𝐶𝑥 + 𝑝 ≤ 𝐴}, 𝑎 = [𝑎1, . . . , 𝑎𝑙]𝑇 ∈ ℝ𝑙, 𝐴 = [𝐴1, . . . , 𝐴𝑙]𝑇 ∈ ℝ𝑙,
𝑝 = [𝑝1, . . . , 𝑝𝑙]𝑇 ∈ ℝ𝑙 and 𝐶 ∈ ℝ𝑙×𝑛. The problem of the
safety-critical game can be formulated as follows.

Problem 1. Consider the nonlinear system (1), and given the
cooperative performance index (4), find the Nash equilibrium
policies

(
𝑢⋆
ℎ
, 𝑢⋆

𝑚

)
, while satisfying 𝑥 ∈ .

To simplify the analysis procedure without loss of generality,
we choose the state constraint in the form of 𝑥𝑘 ∈

(
𝑑𝑘,𝐷𝑘

)
, 𝑘 =

1, . . . , 𝑛. The lower constraint and upper constraint satisfy 𝑑𝑘 <

𝐷𝑘 and ||𝑑𝑘|| ≠ ||𝐷𝑘||, which means the state constraints is asym-
metric. To address the state constraint issue, the transformation
of the system state using the barrier function is introduced. The
safety problem with constraint 𝑥 ∈  is transformed into a stabi-
lization problem.

Based on the constraint 𝑥𝑘 ∈
(
𝑑𝑘,𝐷𝑘

)
, 𝑘 = 1, . . . , 𝑛, we select the

barrier function in the form of

𝑏(𝑥𝑘; 𝑑𝑘,𝐷𝑘) = log
(
𝐷𝑘

𝑑𝑘

𝑑𝑘 − 𝑥𝑘

𝐷𝑘 − 𝑥𝑘

)
(9)

The inverse function of the barrier function 𝑏(𝑥𝑘; 𝑑𝑘,𝐷𝑘) on the
interval (𝑑𝑘,𝐷𝑘) is

𝑏−1(𝑦𝑘; 𝑑𝑘,𝐷𝑘) =
𝐷𝑘𝑑𝑘

(
𝑒

𝑦𝑘

2 − 𝑒
− 𝑦𝑘

2

)
𝑑𝑘𝑒

𝑦𝑘

2 −𝐷𝑘𝑒
− 𝑦𝑘

2

(10)

With the barrier function 𝑏(⋅) and the state 𝑥 ∈ ℝ𝑛 of system (1),
the system state transformation can be summarized as

𝑠𝑘 = 𝑏
(
𝑥𝑘; 𝑑𝑘,𝐷𝑘

)
= 𝑏𝑘 (11)

𝑥𝑘 = 𝑏−1(𝑠𝑘; 𝑑𝑘,𝐷𝑘

)
= 𝑏−1

𝑘
, ∀𝑘 = 1, . . . , 𝑛 (12)
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FIGURE 2 | Scheme of the HMSC system.

By utilizing the chain rule, the time derivative of the transformed
state 𝑠𝑘 is obtained as

𝑑𝑠𝑘

𝑑𝑡
=
(
𝑑𝑥𝑘

𝑑𝑠𝑘

)−1
𝑑𝑥𝑘

𝑑𝑡
(13)

The dynamics of transformed state 𝑠𝑘 (∀𝑘 = 1, . . . , 𝑛) can be
expressed as

𝑠̇𝑘 =
𝑥̇𝑘

𝑑𝑏−1(𝑠𝑘;𝑑𝑘,𝐷𝑘)
𝑑𝑠𝑘

= 𝐹𝑘(𝑠) + 𝐺ℎ
𝑘
(𝑠)𝑢ℎ + 𝐺𝑚

𝑘
(𝑠)𝑢𝑚 (14)

where 𝑠 =
[
𝑠1, . . . , 𝑠𝑛

]T, 𝐹𝑘(𝑠𝑘) = 𝜏(𝑠𝑘) × 𝑓

([
𝑏−1

1 , . . . , 𝑏−1
𝑛

]T
)

,

𝐺ℎ
𝑘
(𝑠) = 𝜏(𝑠𝑘) × 𝑔ℎ

([
𝑏−1

1 , . . . , 𝑏−1
𝑛

]T
)

and 𝐺𝑚
𝑘
(𝑠) = 𝜏(𝑠𝑘) ×

𝑔𝑚

([
𝑏−1

1 , . . . , 𝑏−1
𝑛

]T
)

with 𝜏(𝑠𝑘) =
(

𝑑𝑏−1(𝑠𝑘;𝑑𝑘,𝐷𝑘)
𝑑𝑠𝑘

)−1
.

Then the transformed system dynamics (14) could be written in
the following compact form:

𝑠̇ = 𝐹 (𝑠) + 𝐺ℎ(𝑠)𝑢ℎ + 𝐺𝑚(𝑠)𝑢𝑚 (15)

where 𝐹 (𝑠) ∶ ℝ𝑛 → ℝ𝑛 is the nonlinear dynamics of transformed
system. 𝐺ℎ(𝑠) ∶ ℝ𝑛 → ℝ𝑜ℎ and 𝐺𝑚(𝑠) ∶ ℝ𝑛 → ℝ𝑜𝑚 are the trans-
formed input gain matrix.

Assumption 2. Assuming that as the original Lipschitz and
bounded system dynamics 𝑓 (𝑥), 𝑔ℎ(𝑥), and 𝑔𝑚(𝑥) is transformed
into the transformed system dynamics𝐹 (𝑠),𝐺ℎ(𝑠), and𝐺𝑚(𝑠), the
transformed system dynamics 𝐹 (𝑠) is also Lipschitz

Remark 3. Note that the proposed barrier-function-based state
transformation safe ADP method ensures system safety strictly,
compared with barrier-penalty method [15, 16] and barrier-
lyapunov method [18, 19]. Through the barrier-function-based
state transformation, the finite state constraints of the original
system are mapped to infinite state constraints of the transformed
system. Once the transformed system is stabilized, the original
system is also stabilized and the safety constraints are satisfied
strictly with the same control input. By designing stabilization
controllers for the transformed system, the safety constraints can
be strictly satisfied.

3.2 | Nash Equilibrium in Transformed System

Based on the transformed state 𝑠 and system dynamics, the Nash
equilibrium for (15) shall be obtained.

The human–machine cooperative game aims to stabilize the
transformed system (15), with minimum resource consumption.
The minimization problem can be solved by minimizing the value
function as

𝑉𝑐𝑜𝑜𝑝

(
𝑠, 𝑢ℎ, 𝑢𝑚

)
= ∫

∞

𝑡

𝑟𝑐𝑜𝑜𝑝
(
𝑠, 𝑢ℎ, 𝑢𝑚

)
𝑑𝜏 (16)

Definition 2. Consider system (15), a pair of policies 𝑢ℎ,𝑚 ={
𝑢ℎ, 𝑢𝑚

}
is admissible, if 𝑢ℎ,𝑚 stabilizes the transformed system

(15), and value function 𝑉 from (16) is finite.

Thus, for the optimality of controlling transformed system (15),
an admissible pair of policies 𝑢∗

ℎ,𝑚
=
{
𝑢∗
ℎ
, 𝑢∗

𝑚

}
is the Nash equilib-

rium, which obtains the optimal value function:

𝑉 ∗
𝑐𝑜𝑜𝑝

(
𝑠, 𝑢ℎ, 𝑢𝑚

)
= min

𝑢ℎ,𝑢𝑚∫
∞

𝑡

𝑟𝑐𝑜𝑜𝑝
(
𝑠, 𝑢ℎ, 𝑢𝑚

)
𝑑𝜏 (17)

Define the Hamiltonian function for the transformed
human–machine cooperative system as

(
𝑠,∇𝑉 , 𝑢ℎ, 𝑢𝑚

) ≜ (∇𝑉 )T[𝐹 (𝑠) + 𝐺ℎ(𝑠)𝑢ℎ + 𝐺𝑚(𝑠)𝑢𝑚
]

+ 𝑟𝑐𝑜𝑜𝑝
(
𝑠, 𝑢ℎ, 𝑢𝑚

)
(18)

where ∇𝑉 = 𝜕𝑉𝑐𝑜𝑜𝑝

𝜕𝑠
is the gradient of the value function.

By differentiating the Hamiltonian function and applying the sta-
tionary conditions, in the form of 𝜕𝑖

𝜕𝑟𝑖
= 0, we can obtain the opti-

mal controller pair as

𝑢⋆
𝑖
(𝑠) = −1

2
𝑅−1

𝑖

(
𝐺𝑖(𝑠)

)T∇𝑉 ⋆, 𝑖 = ℎ,𝑚 (19)

Substituting the optimal controller (19) into the Hamiltonian (18)
yields the Hamilton-Jacobi-Isaacs(HJI) equation as

0 = (∇𝑉 ∗)T

(
𝐹 (𝑠) − 1

2
∑

𝑗∈{ℎ,𝑚}
𝐺𝑗(𝑠)𝑅−1

𝑗
(𝐺𝑗(𝑠))T∇𝑉 ∗

)
+𝑄(𝑠) + 1

4
∑

𝑗∈{ℎ,𝑚}
(∇𝑉 ∗)T

𝐺𝑗(𝑠)𝑅−1
𝑗
(𝐺𝑗(𝑠))T∇𝑉 ∗
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Similar to Lemma 1 from [14], given the transformed system (15),
we can solve the full-state constraints by finding a pair of Nash
Equilibrium policies 𝑢ℎ,𝑚 =

{
𝑢ℎ, 𝑢𝑚

}
.

The following section will introduce the cognitive hierarchy to
obtain a level-𝑘 bounded rationality.

4 | Level-𝒌 Bounded Rationality

This section introduces a level-𝑘 bounded rationality structure to
obtain different levels of human intelligence.

4.1 | Initial Policy (Level-0) and Level-1 Policy

For the cooperative human–machine system, level-0 rationality
represents an instinctive reaction, which means players’ behav-
iors are non-cooperative. To prevent the potential stochastic
danger, we will obtain human level-0 rationality by solving an
optimization problem, which is in the form of minimizing a
specific value function as

𝑉 0
𝑢ℎ

(
𝑠0
)
= min

𝑢0
ℎ
∫

∞

0

(
𝑀(𝑠) + (𝑢0

ℎ
)T𝑅ℎ𝑢

0
ℎ

)
d𝜏 (20)

which is subject to the dynamics of the system 𝑠̇ = 𝐹 (𝑠) +
𝐺ℎ(𝑠)𝑢0

ℎ
, 𝑀(𝑠) is the quadratic function of transformed state 𝑠.

According to the optimal control theory, the stationary condition
for the optimization of value (20) is

𝑢0
ℎ
(𝑠) = −1

2
𝑅−1

ℎ
(𝐺ℎ(𝑠))T∇𝑉 0

ℎ
(21)

where ∇𝑉 0
ℎ
=

𝜕𝑉 0
𝑢ℎ
(𝑠)

𝜕𝑠
, the value function 𝑉 0

𝑢ℎ
is known to satisfy

the Hamilton-Jacobi-Isaacs(HJI) equation, namely

(
𝑠,∇𝑉 0

ℎ
, 𝑢0

ℎ

)
=
(
∇𝑉 0

ℎ

)T[
𝐹 (𝑠) + 𝐺ℎ(𝑠)𝑢0

ℎ

]
+ 𝑟𝑐𝑜𝑜𝑝

(
𝑠, 𝑢0

ℎ
, 0
)
= 0
(22)

Assuming the human always acts the level-0 policy, the
level-1 policy of the machine could be solved subse-
quently, which is the optimal response to the initial level-0
policy.

To acquire the level-1 policy of the machine, an optimization
problem is established as follows:

𝑉 1
𝑢𝑚

(
𝑠0
)
= min

𝑢1
𝑚
∫

∞

0

(
𝑀(𝑠) + (𝑢1

𝑚
)T𝑅𝑚𝑢

1
𝑚
+ (𝑢0

ℎ
)T𝑅ℎ𝑢

0
ℎ

)
d𝜏 (23)

which is subject to the dynamics of the system 𝑠̇ = 𝐹 (𝑠) +
𝐺ℎ(𝑠)𝑢0

ℎ
+ 𝐺𝑚(𝑠)𝑢1

𝑚
. The optimal policy for the optimization

problem (23) is

𝑢1
𝑚
(𝑠) = −1

2
𝑅−1

𝑚
(𝐺𝑚(𝑠))T∇𝑉 1

𝑚
(24)

where ∇𝑉 1
𝑚
=

𝜕𝑉 1
𝑢𝑚

(𝑠)

𝜕𝑠
, the value function 𝑉 1

𝑢𝑚
is known to satisfy

the HJI equation, namely (
𝑠,∇𝑉 1

𝑑
, 𝑢0

ℎ
, 𝑢1

𝑚

)
= 0.

4.2 | Level-𝒌 and Level-(𝒌+ 1) Policies

An iterative procedure is used to formulate higher-level ratio-
nal policies for the human and machine, respectively, in which
the human and machine have the belief that their partner uses
lower-level rationality.

Interacting with the machine which uses level-(𝑘 − 1) rationality,
the human player acquires level-𝑘 thinking by solving the mini-
mization of the value function as

𝑉 𝑘
𝑢ℎ

(
𝑠0
)
= min

𝑢𝑘
ℎ
∫

∞

0

(
𝑀(𝑠) + (𝑢𝑘

ℎ
)T𝑅ℎ𝑢

𝑘
ℎ
+ (𝑢𝑘−1

𝑚
)T𝑅𝑚𝑢

𝑘−1
𝑚

)
d𝜏

(25)
which is subject to the dynamics as

𝑠̇ = 𝐹 (𝑠) + 𝐺ℎ(𝑠)𝑢𝑘
ℎ
+ 𝐺𝑚(𝑠)𝑢𝑘−1

𝑚
(26)

The corresponding HJI equation is (
𝑠,∇𝑉 𝑘

ℎ
, 𝑢𝑘

ℎ
, 𝑢𝑘−1

𝑚

)
= 0. The

stationary condition leads to the formulation of the level-𝑘
policy as

𝑢𝑘
ℎ
(𝑠) = −1

2
𝑅−1

ℎ
(𝐺ℎ(𝑠))T∇𝑉 𝑘

ℎ
(27)

Similarly, the level-(𝑘 + 1) rationality could be obtained by solv-
ing the subsequent minimization of the value function as

𝑉 𝑘+1
𝑢𝑚

(
𝑠0
)
= min

𝑢𝑘+1
𝑚

∫
∞

0

(
𝑀(𝑠) + (𝑢𝑘+1

𝑚
)T𝑅𝑚𝑢

𝑘+1
𝑚

+(𝑢𝑘
ℎ
)T𝑅ℎ𝑢

𝑘
ℎ

)
d𝜏

(28)

which is subject to the dynamic

𝑠̇ = 𝐹 (𝑠) + 𝐺ℎ(𝑠)𝑢𝑘
ℎ
+ 𝐺𝑚(𝑠)𝑢𝑘+1

𝑚
(29)

The level-𝑘 controller for the system (28) is given by

𝑢𝑘+1
𝑚

(𝑠) = −1
2
𝑅−1

𝑚
(𝐺𝑚(𝑠))T∇𝑉 𝑘+1

𝑚
(30)

The HJI equation satisfies (
𝑠,∇𝑉 𝑘+1

𝑑
, 𝑢𝑘

ℎ
, 𝑢𝑘+1

𝑚

)
= 0.

Theorem 1. Consider the transformed system (15), given the
human and machine bounded level-𝑘 and level-(𝑘 + 1) rationality,
respectively, the corresponding value functions are positive definite.
If the following conditions hold:

𝑢𝑘
ℎ
(0) = 0, 𝑢𝑘+1

𝑚
(0) = 0,

𝑉̇
𝑘

𝑢ℎ
(s) < 0, 𝑉̇ 𝑘+1

𝑢𝑚
(s) < 0,∀s ≠ 0,

(
𝑠,∇𝑉 𝑘

ℎ
, 𝑢𝑘

ℎ
, 𝑢𝑘−1

𝑚

)
= 0,∀s,

(
𝑠,∇𝑉 𝑘+1

𝑑
, 𝑢𝑘

ℎ
, 𝑢𝑘+1

𝑚

)
= 0,∀s,

(
𝑠,∇𝑉 𝑘

ℎ
, 𝑢ℎ, 𝑢

𝑘−1
𝑚

)
⩾ 0,∀s, 𝑢ℎ,

(
𝑠,∇𝑉 𝑘+1

𝑑
, 𝑢𝑘

ℎ
, 𝑢𝑚

)
⩽ 0,∀s, 𝑢𝑚

Then the bounded rational policy pair 𝑢ℎ,𝑚 = {𝑢𝑘
ℎ
, 𝑢𝑘+1

𝑚
} stabilizes

system (26) and (29) asymptotically. The values of policies (27) and
(30) are the minimum as

𝑐𝑜𝑜𝑝

(
𝑥0; 𝑢𝑘ℎ, 𝑢

𝑘−1
𝑚

)
= min

𝑢ℎ

𝑐𝑜𝑜𝑝

(
𝑥0; 𝑢ℎ, 𝑢𝑘−1

𝑚

)
,∀𝑥0 (31)
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𝑐𝑜𝑜𝑝

(
𝑥0; 𝑢𝑘ℎ, 𝑢

𝑘+1
𝑚

)
= min

𝑢𝑚

𝑐𝑜𝑜𝑝

(
𝑥0; 𝑢𝑘ℎ, 𝑢𝑚

)
,∀𝑥0 (32)

Proof. Similar to Theorem 2 of article [24], first we obtain the
performance index of policy 𝑢ℎ,𝑚 = {𝑢ℎ, 𝑢𝑘−1

𝑚
}, namely

𝐽𝑐𝑜𝑜𝑝(𝑠0, 𝑢ℎ, 𝑢
𝑘−1
𝑚

)

= ∫
∞

0

(
−𝑉̇ 𝑘

𝑢ℎ
+(

𝜏,∇𝑉 𝑘
ℎ
, 𝑢ℎ, 𝑢

𝑘−1
𝑚

))
𝑑𝜏

= −lim
𝑡→∞

𝑉 𝑘
𝑢ℎ
(𝑠(𝑡)) + 𝑉 𝑘

𝑢ℎ
(𝑠0) + ∫

∞

0

((
𝜏,∇𝑉 𝑘

ℎ
, 𝑢ℎ, 𝑢

𝑘−1
𝑚

))
𝑑𝜏

Since the transformed system is stable under input 𝑢ℎ, it can be
inferred that lim𝑡→∞ 𝑉 𝑘

𝑢ℎ
(𝑠(𝑡)) = 0, which results in

𝐽𝑐𝑜𝑜𝑝(𝑠0, 𝑢ℎ, 𝑢
𝑘−1
𝑚

)

= 𝑉 𝑘
𝑢ℎ
(𝑠0) + ∫

∞

0

((
𝜏,∇𝑉 𝑘

ℎ
, 𝑢ℎ, 𝑢

𝑘−1
𝑚

))
𝑑𝜏 ≥ 𝑉 𝑘

𝑢ℎ
(𝑠0)

Subsequently, by replacing 𝑢 with 𝑢𝑘
ℎ
, and utilizing the HJI

equation(
𝑠,∇𝑉 𝑘

ℎ
, 𝑢𝑘

ℎ
, 𝑢𝑘−1

𝑚

)
= 0, Equation (31) is obtained. Sim-

ilarly, the Equation (32) could be concluded. Therefore, policies
pair 𝑢ℎ,𝑚 = {𝑢𝑘

ℎ
, 𝑢𝑘+1

𝑚
} can globally asymptotically stabilize the sys-

tem (26) and (29), respectively. ◽

Remark 4. The level-𝑘 model inherently captures bounded
rationality and potentially irrational behavior through its hier-
archical reasoning structure. At level-0, the human exhibits
non-strategic behavior that may appear irrational from a
game-theoretic perspective. Higher levels represent increasingly
sophisticated but still boundedly rational reasoning, as humans
typically do not use infinite recursive thinking. This framework
allows us to model various degrees of human behavioral sophisti-
cation, from simple reactive responses to more strategic thinking,
while maintaining computational tractability.

Remark 5. The Nash equilibrium of the human–machine sys-
tem with level-𝑘 bounded rationality is obtained by solving the
minimization of the value function in each level of the cognitive
hierarchy. By iteratively solving the minimization of the value
function, the level-𝑘 policy of the human and the level-(𝑘 + 1)
policy of the machine are obtained. The existence and uniqueness
of the Nash equilibrium are guaranteed by the iterative procedure
of the level-𝑘 bounded rationality as level approaches infinity
(𝑘 → ∞) in Theorem 1. It should be noted that Theorem 1 and
its proof could be referred to the existing literature [24, 46].

Remark 6. Level-𝑘-based human behavior modeling together
with barrier-function-based transformation can simulate the
decision-making of the irrational human in the safety state. The
proposed level-𝑘-based human behavior modeling is designed
to capture the bounded rationality of human agents in the
decision-making process, which integrates the level-𝑘 frame-
work with probabilistic distribution to model the uncertainty and
bounded rationality of human agents. Through combining the
level-𝑘 framework with the barrier-function-based transforma-
tion, the safe level-𝑘 policy is learned under the transformed sys-
tem dynamics, which means this safe policy is able to maintain
the safety constraints of the original system. Although the model-
ing of the irrational human behavior contains some uncertainties

and bounded rationality, every level-𝑘 policy is learned under
the safety constraints of the transformed system, which ensures
that the irrational human behavior can be simulated with certain
safety guarantees. Also, the sub-optimality of the level-𝑘 policy
could be achieved in the cooperative human–machine system.
While the level of intelligence 𝑘 increases to infinity, the optimal-
ity of the human–machine system is guaranteed.

4.3 | Online Learning for Bounded Rationality

In this subsection, we use the ADP method to approximate
bounded rationality online. Two critic networks are utilized to
obtain the value functions 𝑉𝑖, ∀𝑖 ∈ {ℎ,𝑚} of the human and
machine, respectively. The corresponding policies of the human
and machine are denoted as 𝑢

𝑗

𝑖
for simplification. Up to level-𝑘,

we select the single-layer network to approximate the value
function as

𝑉
𝑗

𝑖
= (𝑊 𝑗

𝑖
)𝑇 𝜙𝑗(𝑠) + 𝜖

𝑗

𝑖
(𝑠) (33)

where 𝑊𝑖 ∈ ℝ𝑝𝑖 represent the ideal neuron weight of the
single-layer network and 𝜙(𝑥) ∈ ℝ𝑛×𝑝𝑖 is the corresponded activa-
tion function, 𝑝𝑖 is the number of hidden layer neuron, and 𝜖𝑖(𝑥) is
the approximation error of the single-layer network. The gradient
for the value function is

∇𝑉
𝑗

𝑖
= (∇𝜙𝑗(𝑥))𝑇𝑊 𝑗

𝑖
+ (∇𝜖

𝑗

𝑖
)𝑇 (𝑠) (34)

The estimated value function 𝑉 𝑖 is expressed as

𝑉
𝑗

𝑖
= (𝑊̂ 𝑗

𝑖
)𝑇 𝜙𝑗(𝑥) (35)

where 𝑊̂
𝑗

𝑖
∈ ℝ𝑝𝑖 is the estimated weight of the single network.

To reduce the computational load, the general form policy 𝑢
𝑗

𝑖
, 𝑖 =

ℎ, 𝑚 is approximated by the single neural network

𝑢
𝑗

𝑖
= −1

2
𝑅−1

𝑖
(𝐺𝑖(𝑠)𝑇 ((∇𝜙

𝑗

𝑖
(𝑠))𝑇𝑊 𝑗

𝑖
+ (∇𝜖

𝑗

𝑖
(𝑠))𝑇 ) (36)

With the gradient of the value function presented in (34), the
actual controller can be expressed as

û𝑗

𝑖
= −1

2
𝑅−1

𝑖
𝐺𝑖(𝑠)𝑇 (∇𝜙

𝑗

𝑖
(𝑠))𝑇 𝑊̂ 𝑗

𝑖
(37)

Based on the estimated value function (35) and control (37), the
approximation error of the HJI equation is defined as

(
𝑠,∇𝜙

𝑗

𝑖
, 𝑢

𝑗

𝑖

)
=

∑
𝑙=ℎ,𝑚

(𝑢𝑗
𝑙
)𝑇𝑅𝑖𝑢𝑙 +𝑀(𝑠)

+ [(𝑊 𝑗

𝑖
)𝑇∇𝜙

𝑗

𝑖
+ (∇𝜖

𝑗

𝑖
)𝑇 ]

(
𝐹 +

∑
𝑙=ℎ,𝑚

𝐺𝑙𝑢
𝑗

𝑙

)

For the simplification of notation, denote (
𝑠,∇𝜙

𝑗

𝑖
, 𝑢

𝑗

𝑖

)
= 𝑒

𝑗

𝐻,𝑖
,

(
𝑠,∇𝜙

𝑗

𝑖
,û𝑗

𝑖

)
= 𝑒

𝑗

𝑖
and 𝜔

𝑗

𝑖
= ∇𝜙𝑖(𝐹 + 𝐺ℎ𝑢

𝑗

ℎ
+ 𝐺𝑚𝑢

𝑗
𝑚).

To obtain the approximated policy 𝑢
𝑗

ℎ,𝑚
, an optimization could be

constructed with the approximation error of the HJI equations.
First, by combining the historical and instantaneous data, the
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energy-like objective 𝐸𝑖 for ADP optimization is defined as
follows:

𝐸
𝑗

𝑖
= 1

2

𝑀∑
𝑘=1

(𝑒𝑗
𝑖,𝑘
)2(

1 + (𝜔𝑗

𝑖,𝑘
)𝑇 𝜔𝑗

𝑖,𝑘

)2 (38)

where 𝜔
𝑗

𝑖,𝑘
, 𝑘 = 1, . . . ,𝑀 is the historical data of 𝜔𝑗

𝑖
, 𝜔𝑗

𝑖,0 is the
current record of𝜔𝑗

𝑖
.𝑀 is the length of the historical stack. Define

𝜔
𝑗

𝑖
= [𝜔𝑗

𝑖,1 . . . 𝜔
𝑗

𝑖,𝑀
] as the historical data stack.

Therefore, based on the property of the objective function 𝐸
𝑗

𝑖
,

using the gradient descent method, the learning law for the esti-
mated critic network weight 𝑊̂𝑖 can be derived as

̇̂
𝑊

𝑗

𝑖
= −𝑎𝑗

𝑖

𝜕𝐸
𝑗

𝑖

𝜕𝑊̂
𝑗

𝑖

= −𝑎𝑗
𝑖

𝑀∑
𝑘=1

𝜔
𝑗

𝑖,𝑘
𝑒
𝑗

𝑖,𝑘(
1 + (𝜔𝑗

𝑖,𝑘
)𝑇 𝜔𝑗

𝑖,𝑘

)2 (39)

where the learning rate of each bounded rational level, denoted
as 𝑎

𝑗

𝑖
, plays a crucial role in determining the convergence speed

of network weights 𝑊𝑖.

To prove the stability of the proposed regular ADP controller, the
Lyapunov stability analysis is presented. First, the error dynamics
of 𝑊̃ 𝑗

𝑖
is given as

̇̃𝑊
𝑗

𝑖
(𝑡) = −𝑎𝑗

𝑖

𝑀∑
𝑘=1

𝜔
𝑗

𝑖,𝑘

(𝜔𝑗

𝑖,𝑘
)𝑇 𝜔𝑗

𝑖,𝑘
+ 1

[
(𝜔𝑗

𝑖,𝑘
)𝑇 𝑊̃ 𝑗 + 𝑒

𝑘,𝑗

𝐻,𝑖

(𝜔𝑗

𝑖,𝑘
)𝑇 𝜔𝑗

𝑖,𝑘
+ 1

]
(40)

To facilitate the proof of stability, we present the following
assumption.

Assumption 3. The following conditions hold:

1. The historical stack 𝜔
𝑗

𝑖
satisfies 𝑟𝑎𝑛𝑘(𝜔𝑗

𝑖
) = 𝑝𝑖.

2. The Hamiltonian error 𝑒𝑗
𝐻,𝑖

is upper bounded by a positive
constant 𝑒𝑗

𝐻𝑚𝑎𝑥,𝑖
, such that 𝑒𝑗

𝐻,𝑖
≤ 𝑒

𝑗

𝐻𝑚𝑎𝑥,𝑖
.

3. There exists 𝜇1 ∈ ℝ+ and 𝜇2 ∈ ℝ+, such that the following
persistent excitation condition holds [47]:

𝜇1𝐼 ≤ ∫
𝑡0+𝛿

𝑡0

Ψ𝑗

𝑖
(𝑠)Ψ𝑗

𝑖
(𝑠)𝑇 d𝑠 ≤ 𝜇2𝐼, ∀𝑡0 ∈ ℝ+ (41)

where Ψ𝑗

𝑖
(𝑠) = (𝜔𝑗

𝑖,𝑘
)∕((𝜔𝑗

𝑖,𝑘
)𝑇 𝜔𝑗

𝑖,𝑘
+ 1)2, 𝛿 is a positive con-

stant, and 𝐼 is an identity matrix.

Remark 7. Note that this assumption is made to satisfy the per-
sistent excitation (PE) condition for the learning law (39), which
is a common requirement for the stability of the learning-based
controller. As for the bounded rationality, the PE condition is
essential to ensure the convergence of the critic network weights.
To satisfy the PE condition, the historical data 𝜔

𝑗

𝑖
should be rich

enough to provide sufficient information for the learning process,
by setting the length of the historical stack 𝑀 to be a reasonable
value and the learning rate 𝑎

𝑗

𝑖
to be properly selected.

Next, we present the main theorem about stability.

Theorem 2. Suppose that Assumption 1–3 hold. Consider the
critic network 𝑊

𝑗

𝑖
and the concurrent learning-based update law

(39), the critic weights error 𝑊̃
𝑗

𝑖
is uniformly ultimately bounded

(UUB).

Proof. Similar to the theorem result of work [14, 48], define the
following Lyapunov function:

𝑉
𝑗

𝑖
(𝑡) = 1

2𝑎𝑗
𝑖

(𝑊̃ 𝑗

𝑖
)𝑇 𝑊̃ 𝑗

𝑖
(42)

For each irrational level of human and machine, we have

𝑉̇
𝑗

𝑖
= −(𝑊̃ 𝑗

𝑖
)𝑇 𝜁𝑖(𝑡)𝑊̃

𝑗

𝑖
+ (𝑊̃ 𝑗

𝑖
)𝑇 𝜂𝑖 (43)

where

𝜁𝑖 =
𝑝∑

𝑘=1

𝜔𝑖

(
𝜔

𝑗

𝑖,𝑘

)T

[
1 +

(
𝜔

𝑗

𝑖,𝑘

)T
𝜔

𝑗

𝑖,𝑘

]2 , 𝜂𝑖 =
𝑝∑

𝑘=1

𝜔
𝑗

𝑖,𝑘
𝑒
𝑘,𝑗

𝐻,𝑖[
1 +

(
𝜔

𝑗

𝑖,𝑘

)𝑇

𝜔
𝑗

𝑖,𝑘

]2

With the assumption that 𝑟𝑎𝑛𝑘(𝜔𝑗

𝑖
) = 𝑝𝑖 + 1, we could obtain the

following inequality

𝑉̇
𝑗

𝑖
≤ −𝜆min(𝜁𝑖)||𝑊̃ 𝑗

𝑖
||2 + ||𝑊̃ 𝑗

𝑖
||(𝑀 + 1

2

)
𝑒
𝑗

𝐻𝑚𝑎𝑥,𝑖
(44)

Lyapunov candidate’s differentials 𝑉̇ 𝑖 can be guaranteed to be
negative if ||𝑊̃ 𝑗

𝑖
|| ≥ (𝑀+1)𝑒𝑗

𝐻𝑚𝑎𝑥,𝑖

2𝜆min(𝜁𝑖)
, consequently the error of NN

weights is UUB. The proof is completed. ◽

Remark 8. Theorem 2 demonstrates the stability of the
learning-based controller for the level-𝑘 bounded rationality. The
UUB property of the critic network weights error is guaranteed
by the Lyapunov stability analysis. By satisfying the persistent
excitation condition and selecting the proper learning rate, the
critic network weights will converge to a bounded region. While
Theorem 2 establishes UUB rather than strict convergence, this
is sufficient for practical implementation. The bounded error
means the network weights will stabilize within a small neigh-
borhood of their optimal values. In practice, we can determine
the final weights by either: (1) running the learning process for
a sufficient time period until the weight updates become negli-
gible or (2) selecting the proper initial NN weights that achieve
the approximate optimal solution within the UUB bound. It could
also be beneficial to tune the learning rate and exploration param-
eters to ensure convergence within a desired accuracy. Further
details on weight evolution and convergence could be seen in the
simulation results, where the network weights stabilize within
sub-optimal bounds region after a certain number of iterations,
as shown in Figures 5 and 6.

5 | Shared Control of Human–Machine System

In this section, we propose a shared control framework in which
the machine cooperates with the human possessing time-varying
intelligence to pursue the same goal. To adopt our proposed
control framework in the real human–machine scenario, the
fixed-level policy throughout the interaction should be refrained,

8 of 20 International Journal of Robust and Nonlinear Control, 2025

 10991239, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rnc.7931 by junkai tan - X

ian Jiaotong U
niversity , W

iley O
nline L

ibrary on [24/03/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



which imposes limitations on the human about their utiliza-
tion of rationality and ignores the variability of human behavior.
Then a human–machine shared control framework is developed,
which blends the inputs of the human–machine cooperation.

5.1 | Human Irrationality Modeling and Intent
Inference

As mentioned in the previous section, the machine calculates the
level-𝑘 rational policies by implementing an ADP algorithm that
cooperates with human policies. As a result, rather than using
a precise level of human behavior, a probabilistic distribution of
human policies is utilized to model the stochastic and dynamical
effects resulting from human behavioral decision-making.

Problem 2. Given a certain finite number of level-𝑘 value
functions and strategies, find a level-𝑘 probability distribution
from simulations based on measured human behavior.

Assumption 4. Assuming that there is no deviation between
the actual human behavior and the measured human behavior,
the impact of human on the system, which is represented as the
control input of human behavior, can be precisely transmitted
and observed through channels and sensors.

Remark 9. It should be noted that this assumption is made to
ensure the accuracy of the measured human behavior, which is
essential for the probabilistic distribution modeling of human
policies. The core idea of this assumption is that the machine
agent is able to observe and calculate the human agent’s con-
trol input and its impact on the system by computing 𝑟𝑘 from
Equation (45), the human agent’s input is usually import from
certain digital input channels, which could be feasibly measured
by analog sensors or other devices and transmitted digitally to the
machine agent.

Definition 3. The error of optimism is defined as the differ-
ence between the measured human behavior denoted ℎ(𝜏), and
the human policy of level-𝑘.

𝑟𝑘 = ∫
𝑇int

‖‖‖‖ℎ(𝜏) +
1
2
𝑅−1

ℎ
(𝐺ℎ)𝑇 (∇𝜙

𝑗

ℎ
)𝑇 𝑊̂ 𝑗

ℎ

‖‖‖‖d𝜏 (45)

where 𝑗 ∈ {1, . . . , 𝑘𝑚}, 𝑘𝑚 is the maximum level of human ratio-
nality been computed. Remark that (45) is the norm of the mea-
sured distance from human approximated policy of each level.

Consider the machine performing at the optimal response,
namely the Nash equilibrium ℎ(𝑡) = − 1

2
𝑅−1

ℎ
(𝐺ℎ)𝑇 (∇𝜙ℎ)𝑇

𝑊 ∗
ℎ
, ∀𝑡 ≥ 0. According to Theorem 1, it is achievable to

train any given level-𝑘 to attain convergence with the opti-
mal response strategy of a human, which in the form of
𝑢
𝑗

ℎ
(𝑡) = − 1

2
𝑅−1

ℎ
(𝐺ℎ)𝑇 (∇𝜙

𝑗

ℎ
)𝑇 𝑊̂ 𝑗

ℎ
. Moreover, the level-𝑘 ratio-

nality will approach infinity and ultimately converge to the Nash
solution. This implies that the Nash solution represents the limit
of the level-𝑘, that is, lim𝑗→+∞

‖‖‖𝑉 𝑗

ℎ
− 𝑉 ⋆

ℎ

‖‖‖ = 0, it provides

lim
𝑗→+∞

𝑢
𝑗

ℎ
(𝑡) = lim

𝑗→+∞

(
−1

2
𝑅−1

ℎ
(𝐺ℎ)𝑇 (∇𝜙

𝑗

ℎ
)𝑇 𝑊̂ 𝑗

ℎ

)
= −1

2
𝑅−1

ℎ
(𝐺ℎ)𝑇 (∇𝜙ℎ)𝑇 𝑊̂ ∗

ℎ
= ℎ(𝑡) (46)

Consequently, lim𝑘→+∞ 𝑟𝑘 = 0, the following probabilistic distri-
bution model would be established based on the error 𝑟𝑘.

During each interval of interaction 𝑇int , the error 𝑟𝑘 will be orga-
nized in a vector r of the form r =

[
𝑟1, 𝑟2, . . . , 𝑟𝑘𝑚

]
. To formulate

the bounded rational human behavior, the softmax function is
utilized to transform the error vector r into a bounded value vec-
tor. Then, the policy of the human player could be represented by
the distribution as

(ℎ) =
𝑒−𝑟

𝑘∑𝑘𝑚
𝑖=1𝑒

−𝑟𝑖
(47)

Remark 10. The distribution known as “Softmax” is a rou-
tine selection for modeling human decision-making [30]. Minor
errors indicate greater chances of choosing a suitable bounded
rational behavior.

To obtain the safe and stabilizing policies of level-𝑘
human–machine cooperation, an online ADP algorithm is
formulated in Algorithm 1.

Due to the agility of human consciousness, the intended act
of human beings is always powerful and necessary in complex
scenarios, such as rapid responses to emergencies safely. How-
ever, human is bounded rational, for the limitation of human
observation and intelligence. The execution of the machine is pre-
defined, making full use of observed data to perform tasks that
achieve localized optimal control.

A typical shared control framework is divided into two main
components: (1) intent inference, which obtains confidence in
humans by inferring the intentions of human behaviors and (2)
arbitration control, which makes decisions about how to fuse
human and machine behaviors through the preceding confi-
dence judgments about human intentions. To infer the intent of
the irrational human player, confidence in the human decision is
established. To provide a judgmental basis for subsequent arbi-
tration of shared control, confidence in human decision-making
can be expressed as the difference between the probability of the
current belief and the probability of the smallest. Inspired by the
article [34], the computation method for confidence is proposed
as follows:

𝑐(𝑡) = (𝑏∗
ℎ
) − min

𝑏ℎ∈𝐵⧵𝑏∗ℎ
(𝑏ℎ) (48)

where 𝑏∗
ℎ

is the most probable human behavior, 𝐵 is the set of all
possible human behaviors, and (𝑏ℎ) is the probability of human
behavior 𝑏ℎ. By calculating the confidence 𝑐(𝑡), the shared control
system can determine the level of human intelligence and make
decisions about how to blend human and machine behaviors
with the linear arbitration (8).

5.2 | Arbitration and Shared Control Paradigm

In shared control, the final input to the control system is usually
a combination of human behavioral input 𝑢ℎ and machine con-
trol input 𝑢𝑚. In this article, the machine and the human share
the same goal of stabilizing a nonlinear affine input system, and
the reward functions of the two intelligences are defined to be
similar in preliminary. Through an arbitration function based
on intentional inference, the shared control system allocates the

9 of 20
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ALGORITHM 1 | ADP-Based Level-𝑘 Human–Machine Cooperation.

Require:
1: Initial state 𝑥0
2: Input gain matrix 𝑅𝑖

3: Learning rate 𝑎
𝑗

𝑖
for 𝑖 ∈ {ℎ,𝑚}

4: Maximum level 𝑘𝑚
Ensure:
5: Bounded rational human policy distribution (ℎ)
6: Optimal machine policy 𝑚

7: for 𝑘 = 0,… , 𝑘𝑚 do ⊳ Learn level-𝑘 policies
8: for 𝑖 ∈ {ℎ,𝑚} do
9: Initialize critic weights 𝑊̂ 𝑘

𝑖

10: Set cooperator policy 𝑢𝑘−1
𝑖′

⊳ Previous level policy
11: Learn optimal policy 𝑢𝑘

𝑖
via (39)

12: Update transformed system (15)
13: end for
14: end for
15: for 𝑘 = 0,… , 𝑘𝑚 do ⊳ Model human behavior
16: Interact with machine policy 𝑢𝑘

𝑚

17: Calculate probability (ℎ) via (47)
18: end for
19: Apply modeled human behavior ℎ

20: Learn optimal machine policy 𝑚 via (39)
21: Update transformed system (15)

autonomy of the human and the machine, the following blending
control input is proposed:

Γ
(
𝑢ℎ(𝑡), 𝑢𝑚(𝑡)

) ≜ (1 − 𝛼) ⋅ 𝑢ℎ(𝑡) + 𝛼 ⋅ 𝑢𝑚(𝑡) (49)

where 𝛼 ∈
[
0, 𝜃3

]
is the adaptive arbitration function designed in

(8), which allocates the authority of the control input between the
human and the machine agent.

Because the Jacobian matrix of the human and the machine are
not necessarily identical to obtain a shared control input that
can be adapted to different dynamics, we reconstruct the above
equation (49) to the following vector form:

𝛽
(
𝑢ℎ(𝑡), 𝑢𝑚(𝑡)

) ≜ [(1 − 𝛼)𝑢ℎ(𝑡), 𝛼𝑢𝑚(𝑡)]𝑇 (50)

With the blending Jacobian matrix 𝑔𝑏𝑙𝑒𝑛𝑑 = [𝑔ℎ, 𝑔𝑚]𝑇 from
Equation (2), the dynamics of the human–machine system could
be rewritten as the product of the blending matrix 𝑔𝑏𝑙𝑒𝑛𝑑 and the
vector-formed shared control input 𝛽

(
𝑢ℎ(𝑡), 𝑢𝑚(𝑡)

)
:

𝑥̇ =𝑓 (𝑥) + 𝑔𝑏𝑙𝑒𝑛𝑑(𝑥)𝛽
(
𝑢ℎ(𝑡), 𝑢𝑚(𝑡)

)
,

s. t. 𝑢𝑚(𝑡) = 𝑢𝑘
𝑚
(𝑥)

𝑢ℎ(𝑡) ∼ (ℎ = û𝑘

ℎ
) (51)

where 𝑢𝑘
𝑚
(𝑥) is the level-𝑘 machine policy derived from (37), 

is the probabilistic bounded rational human policy calculated by
(47). The confidence 𝑐(𝑡) is obtained by (48), and the arbitration
function 𝛼 is calculated by (8).

The developed shared control framework is able to consider
both impact of human participants and autonomous machines.
Through constructing bounded rationality of human thinking, a

probabilistic distribution of intent inference is utilized to simu-
late the irrationality of human. The arbitration function is used
to evaluate the confidence of the human and the machine, where
the higher the confidence of the human, the lower the confidence
of the autonomous machine. By evaluating and combining the
input of both human and machine, the system is able to maintain
in the safe state space while one participant is safety-awareness
and the other is not. These mechanisms ensure that the shared
control framework is able to achieve control assignments effec-
tively and safely.

Remark 11. The shared control framework is designed to
ensure the safety of the overall system while one participant is
not safety-awareness. The shared control framework is able to
achieve control assignments effectively and safely by evaluating
and combining the input of both human and machine. In this
article, the inputs of human is modeled as a probabilistic distribu-
tion of level-𝑘 rationality, in which the sub-optimality of human
behavior is considered and guaranteed by Theorem 1. Then the
arbitration function can be seen as a confidence judgment of
two cooperative suboptimal agent’s behavior (or control inputs).
The suboptimality of the shared control system could be guar-
anteed through a proof similar to Theorem 1 with some minor
modifications.

Remark 12. Note that compared with the ADP algorithms [14,
46, 49], the proposed shared control framework that integrates
the level-𝑘 rationality model to capture the bounded rationality
and uncertainty of human agents. Incorporating the direct shared
control framework with the level-k rationality model is a novel
and effective way to model the human irrational behavior in the
shared control system. The proposed shared control framework
is able to ensure the safety of the overall system while one partic-
ipant is not safety-awareness. As for the results comparison with

10 of 20 International Journal of Robust and Nonlinear Control, 2025
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the existing method [14], literature [14] mainly focuses on the
safe ADP stabilization control with two equal agents, which is dif-
ferent from the shared control framework proposed in this article.
Our work focus on the cooperative control of human–machine
system under irrationality of human behavior, which is a new
and important research direction in the field of human–machine
cooperative control.

Remark 13. In practice, standard system identification meth-
ods (e.g., physical-informed model [50] or Koopman operator
[51]) can be used to estimate system dynamics from empirical
data. Similarly, human behavior modeling can use supervised
learning, inverse reinforcement learning [52], or Bayesian-based
cognitive modeling [53] to approximate human input under
diverse cognitive conditions. Nonetheless, uncertainties from
unmodeled dynamics, measurement noise, and variability in
human decision-making are unavoidable. Robust or adaptive
control methods (e.g., online critic weight updates) can mitigate
these uncertainties, preserving stability and performance despite
modeling errors. Moreover, interval-based techniques or proba-
bilistic bounds can quantify and manage uncertainty, ensuring
safety and reliability in real-world shared control settings.

The shared control framework that blends the human–machine
inputs is constructed in this section. In the next section, simula-
tions are carried out for verification.

6 | Simulation Results

To demonstrate the effect of the proposed algorithm, simulations
with different settings are implemented. Subsection 6.2 is con-
ducted to show the learning process of the Nash equilibrium poli-
cies

(
𝑢⋆
ℎ
, 𝑢⋆

𝑚

)
from problem 1, while satisfying 𝑥 ∈ . Subsection

6.3 is set to testify the developed shared control framework from
Section 5, which is designed to ensure overall system state safety
while one participant is not safety-awareness.

6.1 | System Setup

To simplify the subsequent experimental design, and facilitate the
comparison between different methods, consider the following
nonlinear affine-input system from [14, 51, 54], which is a classi-
cal nonlinear system with two states and two inputs:

⎧⎪⎨⎪⎩
𝑥̇1 = 𝑥2,

𝑥̇2 = −𝑥2 −
𝑥1
2
+ 𝑥2(cos (2𝑥1)+2)2

4
+ 𝑥2(sin (2𝑥1)+2)2

4
+(sin

(
4𝑥2

1
)
+ 2)𝑢ℎ + (sin

(
4𝑥2

1
)
+ 2)(𝑥)𝑢𝑚

(52)

where 𝑥(𝑡) ∈ ℝ2 is the original state, 𝑢𝑖 ∈ ℝ, 𝑖 = ℎ,𝑚 is the policy
of the human and machine player. For the considered nonlinear
system (52), we verify that Assumptions 1–6 are satisfied: (1) The
system dynamics are continuously differentiable and Lipschitz
continuous in the operating region. (2) The system has an equilib-
rium point at the origin when both inputs are zero. (3) The control
coefficients 𝑔1(𝑥) and 𝑔2(𝑥) are bounded and non-zero in the oper-
ating region. These properties ensure the theoretical results are
applicable to this practical example.

To stabilize the original system (52), the objective of our proposed
controller is to guarantee that the state 𝑥(𝑡) converges to zero
while making sure that the state does not move out of the arbi-
trary safe boundary, namely 𝑥 ∈ , we give the following exact
numerical form expressed as

 = {(𝑥1, 𝑥2)|𝑥𝑖 ∈
(
𝑎𝑖, 𝐴𝑖

)
,∀𝑖 ∈ {1, 2}} (53)

where 𝑎1 = −1.3, 𝑎2 = −3.1, 𝐴1 = 0.5, and 𝐴2 = 0.5.

The initial state is selected as 𝑥0 = [−1,−3]. The learning rates
for the human and machine player are selected as 𝑎1 = 3, 𝑎2 = 5,
respectively, Using transformation (15), the original state 𝑥 is
transformed into the transformed system state 𝑠. Accordingly,
the basis function is designed as 𝜙

𝑗

𝑖
(𝑠) = [𝑠2

1, 𝑠1𝑠2, 𝑠
2
2]

𝑇 . and the
weights are initialized as 𝑊̂

𝑗

𝑖

(
𝑡0
)
= [1.5, 1.5, 1.5]𝑇 , 𝑖 = ℎ,𝑚, 𝑗 =

1, . . . , 𝑘𝑚. The cooperative reward function is defined as

𝑟
(
𝑠, 𝑢ℎ, 𝑢𝑚

)
= 𝑀(𝑠) +

∑
𝑗∈{ℎ,𝑚}

𝑢𝑇
𝑗
𝑅𝑗𝑢𝑗 (54)

where 𝑀(𝑠) = 𝑠𝑇 𝑠, 𝑅ℎ = 2𝐼2 and 𝑅𝑚 = 𝐼2. The parameter of the
arbitration function is 𝜃1 = 0.1, 𝜃2 = 0.9 and 𝜃3 = 0.7.

6.2 | Example Study 1: Learning Process
of Nash Equilibrium Policies

In this simulation, the rationality of the human and machine is
up to level-5, which is smart enough to imitate various human
behavior. After the learning procedure, the proposed human
impact modeling algorithm will be utilized to model a bounded
rational human policy map.

The learning process of the optimal machine critic weights is
shown in Figure 3, which is obtained by interacting with the mod-
eled human impact in the human–machine cooperative game.
The critic network weights of the absolutely rational human are
also shown in Figure 4, and they are all eventually convergent.
Figure 5 illustrates the critic network weights of human behav-
iors at different intelligence levels (level-1 to 5). The norm of the
critic weights of the human behaviors is shown in Figure 6, in
which all the weights are convergent. Note that to save the load
of online learning multiple control policies, previous research
found that 𝑘 up to 5 is enough to simulate uncertainty behav-
ior of human-kinds [35, 55], when the level of human rational-
ity is higher than 5, the human behavior is close to the optimal
response, which is not necessary to be considered in the shared

FIGURE 3 | Critic weights of the optimal machine.
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FIGURE 4 | Critic weights of the rational human.

FIGURE 5 | Critic weights of level-𝑘 human.

FIGURE 6 | Norm of level-𝑘 human critic weights.

control framework. It shows that the weight 𝑊̂ℎ1 ,1 of level-1 con-
verges to 1.65, but the weights 𝑊̂ℎ1 ,𝑖

of level-2 to 5 converge to the
interval of 1.68–1.71, which are close to the weight of absolute
rationality.

The probabilistic distribution of modeled human behavior is
presented in Figure 7, including intelligence from level-1 to

FIGURE 7 | Distribution of modeled human impact.

FIGURE 8 | State trajectories comparison.

level-5. The policy of level-3 has the highest probability, while
level-1 has the lowest probability and the other levels have the
highest probability. The probability of the other levels is about
the same, and such distribution is consistent with the intuition
of various human actions.

The main result is presented in Figure 8, where the state tra-
jectories of the transformed system (Our safe RL approach)
and original non-transformed system (Basic RL approach) are
presented. The “Basic RL approach” refers to the standard ADP
method presented in [54], which provides a nonzero-sum game
RL-based baseline for comparison with our framework. The
detailed learning parameters and algorithmic setup are consis-
tent with the method described in [54]. The trajectory of the
non-transformed system is reaching the safe boundary of rect-
angle state constraint , which may cause great damage to the
human. With the transformed system, human–machine coop-
eration finally stabilizes the state without violating the safety
constraint.

6.3 | Example Study 2: Shared Control
Framework Verification

In the last subsection, we present the simulation result of our safe
RL method, which transformed both the human and the machine

12 of 20 International Journal of Robust and Nonlinear Control, 2025
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into a barrier-function-based transformation system to ensure
safety. However, in most real-world cases, both the human and
the machine cannot ensure they are both safety-aware at the same
time, such as the machine is an automated robot unable to sense
the safety constraints, whereas the human is a safety-awareness
supervised operator, or the human is a unsafe-awareness opera-
tor, whereas the machine is a safety-awareness automated robot.
It is worth exploring the shared control mechanism that ensures
the whole system’s safety when one participant is safety-deprived.

This subsection focuses on the simulation verification of the
shared control architecture proposed in Section V. To discuss
the various safety-critical scenarios and different intelligence lev-
els that exist in human–machine collaboration, experiments are
divided into two main categories: (1) safe human and unsafe
machine (SHUM), unsafe machine (UM) and (2) unsafe human
and safe machine (UHSM), safe machine (SM).

Case 1: Safe Human Unsafe Machine Shared Control.

The cases that involve the unsafe machine are categorized
into the following three scenarios: (1) safe human and unsafe
machine shared control; (2) unsafe machine alone; and (3)
safe human alone. Note that the safe human is aware of the
safety constraints, while the unsafe machine is not. For example,
human agent is a safety-awareness supervised operator, while the
machine agent is an automated robot unable to sense the safety
constraints. It should be noted that the UM case is set for the
comparison of the SHUM case, which is designed to verify the

effectiveness of the shared control framework. In the UM case,
the barrier function transformation is not applied to the machine
agent, and the machine agent is trained to learn the optimal pol-
icy directly. The evolution of state𝑥 = [𝑥1, 𝑥2]with different coop-
erators is shown in Figure 9. The trajectories of the safe human
involved are shown in Figure 9a and b, which do not overstep the
limit. However, the trajectory of the system state under the oper-
ation of the unsafe machine alone is shown in Figure 9c, which
has the state 𝑥2 crossing the upper limit of 𝐴2 = 0.5 and the state
𝑥1 almost touching the boundary limit of 𝑎1 = −1.3. The detailed
evolution of state 𝑥 of three scenarios is shown in Figure 10.
Figure 10a illustrates the evolution of state 𝑥 under the cooper-
ative shared control of the safe human and the unsafe machine.
Figure 10b shows the state trajectory under the action of the safe
level-1 human. Figure 10c shows the state trajectory under the
action of the unsafe machine, which exceeds the safe state limit.

The comparison of case SHUM and UM is shown in Figures 11
and 12, the initial state is normally distributed on 𝑥′0 ∼ 𝑁(𝑥0, 𝑒

2).
A total of 30 tests were conducted. Figure 11 illustrates the evolu-
tion curves of state 𝑥1 under the cooperative shared control of the
safe human and the unsafe machine. The blue line is obtained
with the unsafe machine acting alone. The green line is obtained
under the joint action of the safe human and unsafe machine.
The state of unsafe machines almost hits the limit, and their
oscillations are larger compared with those of the safe humans
involved. The above indications suggest that with the action of
unsafe machines, the system is likely to be in an unsafe situa-
tion, although faster state convergence can be achieved. However,

(a) (b) (c)

FIGURE 9 | State trajectory of (a) safe human and unsafe machine; (b) safe level-1 human; and (c) unsafe machine.

(a) (b) (c)

FIGURE 10 | The evolution of state 𝑥 in (a) safe human and unsafe machine; (b) safe level-1 human; and (c) unsafe machine.
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FIGURE 11 | The evolution of state 𝑥1.

FIGURE 12 | The evolution of state 𝑥2.

FIGURE 13 | Critic weights of machine in the case of SHUM.

with the concerted action of safe humans, the overall system is
in a state far from the safe state boundary. Figure 12 shows how
the state 𝑥2 changes for different combinations of safe humans
and unsafe machines. The blue curve is for the unsafe machine,
which crosses the safe upper limit of state 𝑥2 around 𝑡 = 0.25 s.
The green curve involves the safe-aware human and none of them
cross any safety limit. In this case, the state under the action of a
safe human alone reaches the maximum first, and the state under
the act of human–machine cooperation reaches the maximum
second. The maximum point of the unsafe machine corresponds
to the longest time.

The detailed evolution of the unsafe machine critic network
weights in the case of SHUM and UM are illustrated in
Figures 13, 14.

Case 2: Unsafe Human Safe Machine Shared Control.

The next simulation is about the interaction between the
unsafe human and safe machine. Safe machines aim to

FIGURE 14 | Critic weights of machine in the case of UM.

secure human–machine collaboration with the help of the safe
machine. For example, human agent is a novice unsafe-aware
operator, while the machine agent is a safe-aware automation.
It should be noted that the unsafe level-1 human case is set for
the comparison of the UHSM case, which is designed to verify
the effectiveness of the shared control framework. In the unsafe
level-1 human case, the barrier function transformation is not
applied to the agent, and the agent is trained to learn the optimal
policy directly.

Figure 15 illustrates the state trajectories for three scenarios
with different combinations of the safe machine and unsafe
human. Figure 15a and c shows the state trajectories of the unsafe
human-safe machine shared control, the safe machine control.
Figure 15b shows the state trajectory under the action of the
unsafe level-1 human, which greatly exceeds the safe state limit.
However, the other two state trajectories with the safe machine
involved do not exceed the safe state limit, implying that the col-
laboration between the safe machine and the unsafe human suc-
cessfully secures the system. The detailed evolution of state 𝑥 of
three scenarios is shown in Figure 16. Figure 16a illustrates the
evolution of state 𝑥 under the cooperative shared control of the
unsafe human and the safe machine. Figure 16b shows the state
trajectory under the action of the unsafe level-1 human, which
greatly exceeds the safe state limit. Figure 16c shows the state
trajectory under the action of the safe machine.

Figures 17 and 18 show the evolution for state 𝑥1 and 𝑥2, respec-
tively. The initial state is normally distributed on 𝑥′0 ∼ 𝑁(𝑥0, 𝑒

2).
A total of 30 tests were conducted. The action of the unsafe
human generates the state trajectory in blue, and its maximum
value exceeds the safety limit. The cooperation between the
unsafe human and the safe machine generates the green state
trajectory. Through the intervention of the safe machine, the two
intelligences achieve safe cooperation and stabilization control
of the system. Both the figures show that the state will exceed
the safety limit under the action of the unsafe person alone. The
state 𝑥 = [𝑥1, 𝑥2] is kept within the safety limit with the action of
the safe machine. This indicates that the safe machine guaran-
tees the safety of the human–machine shared control. Figures 19
and 20 illustrate the evolution of the critic network weights with
the involvement of the safe machine.

In two different experimental cases of subsection 6.3, the devel-
oped shared control framework is testified to guarantee the safety
of overall cooperative system state. For the extreme conditions, in
which one participant like human being is not able to be cautious

14 of 20 International Journal of Robust and Nonlinear Control, 2025
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(a) (b) (c)

FIGURE 15 | State trajectories of (a) unsafe human and safe machine; (b) unsafe level-1 human; and (c) safe machine.

(a) (b) (c)

FIGURE 16 | State trajectories of (a) unsafe human and safe machine; (b) unsafe level-1 human; and (c) safe machine.

FIGURE 17 | The evolution of state 𝑥1.

enough to conduct assignment safely, the proposed cooperative
shared control paradigm is able to reduce the impact of irrational
behavior and conduct safe behavior from the other participants.

6.4 | Example Study 3: Cooperative Quadrotor
Tracking Control

6.4.1 | Quadrotor System Dynamics and Simulation
Setup

The simulation is conducted on a customized 3-DOF quadrotor
platform to validate the practical effectiveness of the proposed
level-𝑘 human–machine shared control framework. The system
dynamics configuration is shown in Figure 21, and the system
parameters are listed in Table 1. For the 3-DOF hover system

FIGURE 18 | The evolution of state 𝑥2.

FIGURE 19 | Critic weights of machine in the case of UHSM.

dynamics, the state vector is defined as 𝑥 = [𝜙, 𝜃, 𝜓, 𝜙̇, 𝜃̇, 𝜓̇]⊤ rep-
resenting the roll-pitch-yaw Euler angles and their rates, the out-
put vector is 𝑦 = [𝜙, 𝜃, 𝜓]⊤ containing the measured angles, and
the control input vector is 𝑢 = [𝑉𝑓 , 𝑉𝑏, 𝑉𝑟, 𝑉𝑙]⊤ consisting of the
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front, back, right, and left motor voltages. The system dynamics
can be described by the following state-space model:

𝑥̇ = 𝐴𝑥 + 𝐵𝑢

= 𝐴𝑥 + 𝐵
[
𝛼𝑢ℎ + (1 − 𝛼)𝑢𝑚

]
(55)

where 𝑢ℎ is the simulated human control input calculated by the
proposed level-𝑘 human–machine shared control framework, 𝑢𝑚
is the machine control input calculated by the ADP-based opti-
mal control method, and 𝛼 ∈ [0, 1] is the arbitration parameter
that dynamically adjusts the human–machine control ratio. and
the system matrices 𝐴, 𝐵 are defined as:

𝐴 =

[
03×3 𝐼3×3

03×3 03×3

]
, 𝐵 =

⎡⎢⎢⎢⎢⎢⎣

03×4

−𝑘𝑡 −𝑘𝑡 𝑘𝑡 𝑘𝑡

𝓁𝑘𝑓 −𝓁𝑘𝑓 0 0
0 0 𝓁𝑘𝑓 −𝓁𝑘𝑓

⎤⎥⎥⎥⎥⎥⎦
which satisfies the above Assumptions 1 and 2 for the proposed
safe RL framework.

Remark 14 (Quadrotor System Dynamics). Regarding the
system dynamics matrices A and B defined above: Matrix A repre-
sents the linear state transformation, where the upper-right iden-
tity matrix 𝐼3×3 captures the natural relationship between angu-
lar velocities and angle changes. Matrix B describes the control

FIGURE 20 | Critic weights of machine in the case of SM.

input mapping, where its structure reflects fundamental quadro-
tor dynamics: (1) The zero elements in the first three rows indi-
cate that motor inputs affect angles (𝜙, 𝜃, 𝜓) indirectly through
their derivatives, following the principle that forces and torques
produce accelerations rather than direct position change. (2) The
lower three rows contain the thrust-to-torque conversion coeffi-
cients 𝑘𝑡 and 𝑘𝑓 , which map motor voltages to the resulting roll,
pitch, and yaw moments. (3) This decoupled structure deliber-
ately separates attitude dynamics from translational motion, a
standard practice in quadrotor control when attitude stabilization
is the primary focus. This formulation enables precise attitude
control while maintaining mathematical tractability for the safe
learning framework.

The desired reference trajectory is designed as a smooth sinu-
soidal function with varying amplitudes and frequencies:

⎧⎪⎨⎪⎩
𝜙𝑑(𝑡) = 𝐴𝜙 sin(𝜔𝜙𝑡)
𝜃𝑑(𝑡) = 𝐴𝜃 sin(𝜔𝜃𝑡)
𝜓𝑑(𝑡) = 𝐴𝜓 sin(𝜔𝜓𝑡)

,

⎧⎪⎨⎪⎩
𝜙̇𝑑(𝑡) = 𝐴𝜙𝜔𝜙 cos(𝜔𝜙𝑡)
𝜃̇𝑑(𝑡) = 𝐴𝜃𝜔𝜃 cos(𝜔𝜃𝑡)
𝜓̇𝑑(𝑡) = 𝐴𝜓𝜔𝜓 cos(𝜔𝜓𝑡)

where the trajectory parameters are selected as: 𝐴𝜙 = 0.2 rad,
𝐴𝜃 = 0.15 rad, 𝐴𝜓 = 0.3 rad for amplitudes, and 𝜔𝜙 = 0.25 rad/s,
𝜔𝜃 = 0.25 rad/s, 𝜔𝜓 = 0.15 rad/s for frequencies. To enhance
computational efficiency and learning convergence, the follow-
ing neural network basis functions are adopted:

𝜙
𝑗

𝑖
(𝑠) =

[
𝑠2

1, 𝑠
2
2, 𝑠1𝑠2, 𝑠

2
3, 𝑠1𝑠3, 𝑠2𝑠3, 𝑠

2
4, 𝑠

2
5, 𝑠

2
6, 𝑠1𝑠4, 𝑠2𝑠5, 𝑠3𝑠6

]⊤
where 𝑖 = ℎ,𝑚 denotes human/machine agents, 𝑗 = 1, . . . , 𝑘𝑚
represents rationality levels. The network weights are initialized
as 𝑊̂

𝑗

𝑐𝑖
= 10 + (0, 1) to ensure proper exploration, The learn-

ing rate is set as 𝛼 = 0.001 for the critic NNs. The optimal value
function of sub-optimal levels of human and machine agents are
approximated by the critic NNs in (35), while its correspond-
ing control policy is approximated by (37). 𝑠𝑖(𝑒𝑖) (𝑖 = 1, . . . , 6)
are the transformed tracking errors of original tracking errors
𝑒𝑖 (𝑖 = 1, . . . , 6) with the transformation defined as in (14). The
safety constraints are set as 𝑎𝑖 = −2 rad (or rad/s) and 𝐴𝑖 = 2
rad (or rad/s) for all angles and angular rates. The upper bound

(a) Free-body diagram of 3 DOF Hover Free-body diagram of yaw axis(b)

Free-body diagram of yaw axis(b)

FIGURE 21 | Dynamics of the quadrotor tracking system.
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TABLE 1 | Parameters of the quadrotor system.

Basic properties Motor characteristics

𝑔 Gravitational acceleration 9.81 m/s2 𝑅𝑚 Motor armature resistance 0.83 Ω
𝑚ℎ𝑜𝑣𝑒𝑟 Total mass of hover system 2.85 kg 𝐾𝑡𝑚

Motor torque constant 0.0182 N m A−1
𝑚𝑝𝑟𝑜𝑝 Mass of propeller assembly 0.7125 kg 𝐽𝑚 Motor rotor inertia 1.91 × 106 kgm2

𝓁 Arm length (pivot to motor) 0.197 m

Propulsion parameters Inertial properties

𝐾𝑓 Thrust coefficient 0.1188 N V−1 𝐽𝑦 Yaw inertia 0.1116 kgm2

𝐾𝑡 Torque coefficient 0.0036 N m V−1 𝐽𝑝 Pitch inertia 0.0558 kgm2

𝐽𝑒𝑞𝑝𝑟𝑜𝑝 Equivalent propeller inertia 0.0279 kgm2 𝐽𝑟 Roll inertia 0.0558 kgm2

of the control input is set as 𝑉max = 10 V to ensure the safety
of the physical system. The simulation time is set as 𝑇 = 25 s
with a sampling time of Δ𝑡 = 0.001 s. The level of human ratio-
nality is up to level-5, and the learning process is conducted
with the proposed shared control framework from Algorithm 1.
The control objective is to achieve precise trajectory tracking
while maintaining system stability and safety constraints under
the human–machine shared control framework. The safety con-
straints are imposed on both angles and angular rates to protect
the physical system.

Remark 15. In the quadrotor case study, the human–machine
shared control framework is implemented through a
dual-channel control architecture: (1) The human operator
provides control inputs 𝑢ℎ which are directly mapped to motor
commands [𝑉𝑓 , 𝑉𝑏, 𝑉𝑟, 𝑉𝑙]. These inputs exhibit varying degrees
of rationality (Level-0 through Level-5) representing different
levels of control expertise calculated by the Level-𝑘 and Human
irrationality modeling method given in Algorithm 1, and serve
as real-time cooperative control signals for the machine con-
troller. (2) The machine controller generates control inputs 𝑢𝑚
by computing optimal safe controls that satisfy barrier function
constraints, actively compensating for potentially unsafe human
commands while optimizing system performance through ADP.
The final control synthesis follows 𝑢 = 𝛼𝑢ℎ + (1 − 𝛼)𝑢𝑚, where 𝛼

is dynamically adjusted based on the angular deviation between
human and optimal control vectors. Borrow the detailed shared
parameter calculation method in [44, 51], this adjustment
mechanism is defined as:

𝛼 =

⎧⎪⎪⎨⎪⎪⎩
0, if 𝜂 ≥ 2𝜋

3
1, if 𝜂 ≤ 𝜋

2
𝜂− 2𝜋

3
𝜋

2
− 2𝜋

3

, otherwise
(56)

where 𝜂 denotes the angle between human and machine input
vectors. This mechanism ensures smooth transitions between
human and machine control while maintaining robust system
safety guarantees.

Remark 16 (Constant Rationality Level Assumption).
We acknowledge that the current work assumes a constant
human rationality level throughout the control process. This
simplifying assumption allows us to establish foundational
theoretical guarantees while maintaining analytical tractability.

However, in real-world applications, human decision-making
capabilities may evolve due to factors such as fatigue, learning
effects, or varying cognitive load. Extending our framework
to accommodate time-varying rationality levels represents an
important direction for future research. This could involve devel-
oping adaptive mechanisms to estimate and respond to changes
in human rationality in real-time, further enhancing the practical
applicability of human–machine shared control systems.

Remark 17 (Practical Applicability and Safety Mech-
anism). The quadrotor shared control system could be
improved from our approach and designed as a hierarchical
structure to address practical scenarios. In this architecture,
human operators provide high-level guidance based on their
situational awareness and mission-level decision making, while
the machine controller ensures safe and stable execution of
these high-level commands. The system integrates both human
expertise and autonomous capabilities through an adaptive
sharing ratio 𝛼(𝑥, 𝑡), which dynamically balances between
human intent and safety constraints based on the assessed
rationality level. This mechanism allows the controller to main-
tain system safety while maximizing human control authority
when appropriate, as demonstrated in Case 1 of Example
Study 2. The framework effectively combines human strategic
decision-making with automated safeguards against constraint
violations, making it particularly suitable for complex mission
scenarios requiring both human insight and guaranteed safety
properties.

6.4.2 | Simulation Results

The tracking performance of the quadrotor system is demon-
strated in Figure 22, where all three Euler angles (𝜙, 𝜃, 𝜓)
closely track their reference trajectories with high precision.
The control inputs shown in Figure 23 illustrate the smooth
motor voltage adjustments that achieve stable system control
while respecting actuator constraints. The tracking error com-
ponents are further analyzed in Figures 24, 25, which demon-
strate small bounded errors in both attitude angles and angular
velocities. A comparison of normalized tracking errors between
different control methods is provided in Figure 26, where our
proposed level-𝑘 shared control framework shows superior per-
formance. The evolution of neural network weights for the level-5
human and machine agents is presented in Figure 27, where 𝑊̂ 5

ℎ

and 𝑊̂ 5
𝑚

denote the critic weights of the human and machine
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FIGURE 22 | Attitude tracking performance.
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FIGURE 23 | Human input 𝑢1 and machine input 𝑢2.
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FIGURE 24 | Attitude tracking errors.
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0 5 10 15 20 25

10

12

14

16

0 5 10 15 20 25

Time (s)

10

12

14

16

FIGURE 27 | NN weights of level-5 human and machine.
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FIGURE 28 | Normalized tracking error evolution.

agents, respectively. The weights are updated iteratively during
the learning process, and Figure 27 illustrates the convergence
of the learning process. Figure 28 displays the overall normal-
ized tracking error evolution, demonstrating that the proposed
human–machine shared control framework effectively reduces
tracking errors while maintaining system stability and safety con-
straints. These results validate that our proposed framework suc-
cessfully achieves precise trajectory tracking while accommodat-
ing both human and machine inputs in a cooperative manner.
The bounded tracking errors and smooth control signals indicate
effective coordination between the safety-aware machine con-
troller and the bounded rational human operator.
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7 | Conclusions

The shared control of bounded rational human behavior with a
cooperative machine is investigated in this research. Coopera-
tion between humans and machines is an emerging subject in
safety-critical system control, and it is necessary to guarantee
human safety. Full state safety limitations are guaranteed by
developing a barrier-function-based state transformation. To
construct bounded rationality, a level-𝑘 thinking framework is
developed. The ADP is used to obtain the controller from the
level-𝑘 framework. A probabilistic distribution based on Softmax
is used to model human behavior, simulating the uncertainty of
human intelligence in the cooperative game. The control input
from both the human and the machine is combined through
a shared control framework to stabilize the system safely and
effectively. The effectiveness of the proposed architecture is then
tested through simulations, which show that not only the full
state constraints and stabilization are guaranteed but also the
shared control framework ensures system safety even when
one of the participants is not safety-aware. Future research may
expand our proposed method in different human–machine coop-
eration scenarios, such as human–quadcopter cooperative track-
ing control and human–robotic arm cooperative manipulation
control.
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