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Abstract— In this paper, a safety-guarding controller is in-
troduced to keep the safety of exploration in constrained state
space. The controller is utilized to obtain the nonzero-sum game
Nash equilibrium solution via a model-based reinforcement
learning architecture. To deal with the uncertainty of persistent
excitation, a concurrent learning approach is applied and both
historical and transient data are employed in the learning
process. In order to reduce the computational load, a single-
critic network is utilized for approximation. To demonstrate the
effectiveness of the proposed method, a two-player nonzero-sum
game is developed, toward both convex/non-convex safe state-
space constraints.

I. INTRODUCTION

In recent years, reinforcement learning (RL) has gained
popularity as a means of solving complex control problems
in a variety of fields, including robotics, manufacturing,
and aerospace[1], [2], [3], [4]. The importance of ensuring
safety during the learning process is now widely recognized,
and much research has focused on safety-aware control
design, including Barrier Transformation [5], Reward-barrier
functions [6], Lyapunov-like control barrier functions, and
compensating controller [7]. A state-constrained RL method
is proposed to ensure safety in discrete time systems [8]. In
[9], a method is proposed for safe control under sensor and
actuator attacks. Greene [10] improved the result of work
[11] by sampling the Bellman error and using sparse neural
networks for training, which reduces computational pressure.

Safety is a crucial aspect of N-player games, where
multiple players interact with each other, pursuing a Nash
equilibrium while ensuring that control remains within the
safety limit. In [12], a barrier transformation architecture
is proposed to guarantee the asymmetric safety limit. An
online actor-critic algorithm is developed for N-player non-
zero sum games that involve one single value function
and N-actor controller. [13]. The work of [14] proposed a
robust deep neural network (DNN) with an identifier for
developing a controller and approximating value function.
The result in [15] proposed an ACI architecture for online
learning in games, which relaxed the traditional persistent
excitation requirement. In [16], an online policy iteration
method is developed to simultaneously evaluate two players
in the nonlinear zero-sum game. An off-policy method is
proposed for discrete-time systems to achieve state- and
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input-constrained control in fully cooperative games in [17].
A new approach to H∞ optimal control using a single critic
network is developed in [18], which approximates the value,
control, and disturbance strategies. However, excitation risk
is not always considered in N-player games.

For multi-player systems, concurrent learning is a popu-
lar method for solving persistent excitation problems. The
result in [19] proposed a method that uses historical and
synchronous data effectively for the learning process of con-
trollers. In [20], an online optimal control method is proposed
that depends only on non-strictly excitation conditions. The
method from [21] combines RL and experience replay to
achieve better control performance compared to the previous
result [22]. A model-based method is designed to improve
the efficiency of the computation in [23]. The result in [24]
shows that a method based on DNN and concurrent learning
solves the optimal tracking problem efficiently. However,
safety is ignored in the above research.

Motivated by the above discussion, this paper introduces a
safety-guarding controller to ensure safety during exploration
in constrained state space. The controller is used to obtain
a feedback equilibrium solution for the nonzero-sum game
through a system identification-based RL architecture. To
address the uncertainty of persistent excitation, the concur-
rent learning method is applied, which uses both historical
and instantaneous data in the learning process. To relax
the computation load, a single-critic network is utilized for
approximation. To demonstrate the effectiveness of the pro-
posed method, a two-player nonzero-sum game is developed
that addresses both convex and non-convex safe state space
constraints.

This paper is organized as follows. Section II illustrates
the basic setup for the N-player game and barrier function.
Section III outlines the principles for the safety-guarding
controller design. Section IV developed a model-based rein-
forcement learning structure to implement the online approx-
imation. Section V presented the Lyapunov stability analysis
for the overall system. Section VI verifies the effectiveness
of the proposed method. Section VII concludes the work of
this paper.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Multi-player Nonzero-sum Games

Consider the N-player continuous-time affine system with
nonlinear dynamics

ẋ = f (x)+
N

∑
i=1

gi(x)ui (1)
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where x(t) = [x1,x2, ...,xN ] ∈ Rn, ui(t) ∈ Rm j and gi(x) ∈
Rn×m j , f (x)∈Rn is the drifting nonlinear dynamics. Assume
f (0) = 0, f (x) is local Lipschitz. Let U = [u1,u2, ...,uN ] be
the tuple of admissible control.

Then, We denote the cost function for ith-player as Vi,
which in the form of

Vi(x(0),u1,u2, ...,uN) =
∫

∞

t
ri(x(t),u1,u2, ...,uN)dt

=
∫

∞

t
(Qi(x)+

N

∑
j

uT
j Ri ju j)dt (2)

where ri ∈R≥0 is the instantaneous reward function, defined
as r(x(t),u1,u2, ...,uN) = Qi(x)+∑

N
i uT

j Ri ju j. The objective
of the nonzero-sum game is to find a tuple of Nash equi-
librium solutions U∗ = [u∗1,u

∗
2, ...,u

∗
N ], which minimizes the

overall value function, the corresponding value function can
be expressed as

V ∗
i (x(0),u

∗
1,u

∗
2, ...,u

∗
N) = min

ui

∫
∞

t
ri(x(t),u∗1,u

∗
2, ...,u

∗
N)dt

(3)
The corresponding control can be expressed as

u∗i = argmin
ui

Vi (4)

To obtain the analytical solution, we differentiate the value
function V ∗, which results in the Hamilton-Jacobi equation
in the form of

0 = ri(x(t),u1, ...,uN)+(∆V ∗
i

T ( f (x)+
N

∑
j=1

g j(x)ui) (5)

According to optimal control theory[15], Nash equilibrium
control solutions U∗ = [u∗1,u

∗
2, ...,u

∗
N ] can be expressed as

u∗i =−1
2

R−1
ii gT

i (∆Vi)
T (6)

Substituting eq. (6) into eq. (5), the closed-loop Hamilton-
Jacobi equation is expressed as

0 = ri(x(t),u1, ...,uN)+(∆V ∗
i

T ( f (x)+
1
4

N

∑
j=1

uT
j Ri ju∗j)) (7)

B. Control Barrier Function

First, define the forward invariant property for a set c ⊂
Rn. if, for any x0 ∈ c, system dynamic(1)) ’s solution satisfy
x(t) ∈ c in a pre-defined period t ∈ I (x0), where I (x0) is
the maximum interval corresponding to initial state x0 . The
forward invariant set c is a safe set, which consists of interior
and boundary 

c = {x ∈ Rn | h(x)≥ 0}
∂c = {x ∈ Rn | h(x) = 0}

Int(c) = {x ∈ Rn | h(x)> 0}
(8)

where h ∈ Rn is the boundary function, which vanishes in
the boundary of c. For any state x(t) ∈ ∂c, we mark that the
system (1) is a safe system.

Definition 1. If a continuous function b(x) satisfies three
important properties below, it is called as barrier function

1) The function b(x) does not go to infinity when x(t) ∈
Int(c), that is, |b(x)|< ∞.

2) As the state x approaches the boundary of the forward
invariant set, the function b(x) goes to infinity, expressed as
limz→∂c b(x) = ∞.

3) The equilibrium value of the barrier function vanishes,
that is, b(0) = 0.

Then, as to facilitate the subsequent design of safety-
guarding controller. We select the barrier function b(x) in
the form of

b(x) =
(

1
h(x)

− 1
h(0)

)2

(9)

where h(x) is a nonzero continuous boundary function that
ensures b(x) meet all three properties of Definition 1.

III. SAFETY-GUARDING CONTROLLER DESIGN

The multi-player non-zero sum game and the definition of
the barrier function are introduced in the previous section.
Motivated by [7], we introduce the safety-guarding controller

ub(x) =−αigi(x)T
Γ
(
∇b(x)T ) (10)

where αi is the selected control gain. b(x) is the barrier
function as we defined in the last section.

Lemma 1. For N-player dynamical system (1), assume
that the interior set Int(c) contains the origin x0. If for all
t ∈I (x0), the barrier function doesn’t approach infinity, that
is, ∥b(x(t))∥< ∞ , the interior set Int(c) has the property of
forward invariant.

According to the fact of Lemma 1, the safety of the system
is guaranteed under the condition that the barrier function is
finite. To design the controller for the specific multi-player
nonzero-sum game, we give the following assumption hold.

Assumption 1. For N-player dynamical system (1), given
a forward invariant set c, assume that the following proper-
ties hold:

1) Nonlinear dynamic f (x) is bounded by a non-negative
increasing function f ∈ R≥0, that is, ∥ f (x)∥ ≤ f (x) and
limx→∂c f (x)< ∞.

2) There exist a lower bound for g(x), that is, g ≤ ∥g(x)∥
for all x ∈ c, where g ∈ R>0 is a positive constant.

3) The non-zero neighborhood of the boundary set ∂c
is defined as N (∂c), which satisfies that for all x ∈
N (∂c), safety-guarding controllers will not vanish, that is,
∥Γ(∇b(x))g(x)∥ ̸= 0.

Based on Assumption 1 and Lemma 1, we have the
following theorem to obtain the safe control policy, which
renders the interior set Int(x) forward invariant for the
system (1)).

Lemma 2. For N-player dynamical system (1), a forward
invariant set c ⊂ Rn from eq. (8) which satisfies 0 ∈ Int(c),
and define b as a barrier function for the multi-player game
(1). Given that Assumption 1 holds, the safety-guarding
controller of eq. (10) u = ub(x) ensures the interior set Int(c)
is forward invariant, in which the safety of the system (1)
is protected.

The above result shows when the safety-guarding term
is used as a controller, interior set Int(c) is ensured to be
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forward invariant. Next, a regular adaptive dynamic pro-
gramming (ADP) controller is obtained for solving the Nash
equilibrium solution. Later, it is combined with the safety-
guarding controller, which guarantees safe exploration within
the state constraints of any convex/non-convex set.

Lemma 3. Assume continuous-time controller ui(x, t) is
designed to be locally Lipschitz in state space and meets the
condition that ui(0, t)= 0 for t ∈I (x0). Assume Assumption
1 holds and the drift dynamic is bounded as ∥g(x)ui(x, t)∥ ≤
gu, where gu has the same definition as f . The controller is
obtained as

ub,i = ui(x, t)+ub(x) (11)

ensures that the interior set Int(C) is a forward invariant set
for (1).The controller also guarantees that the origin of state
space is the final equilibrium solution of the system (1).

With a nominal controller and a safety-guarding term,
we derived a controller ub,i that maintains Int(c) forward
invariant. In the next section, we will detail the use of RL
for the online approximation of the nominal controller to
obtain eq. (11).

IV. ONLINE APPROXIMATION BASED ON
REINFORCEMENT LEARNING

In previous sections, we introduced the safe-guarding
controller to keep the safety of exploration under a state
boundary. In this section, the structure of RL is used to im-
plement the approximation of the control and value function.
To avoid the danger of persistence excitation exceeding the
safety limits, the technique of concurrent learning is utilized.

A. Approximation for the Value Function

To obtain the analytical solution of control policies ui and
value functions Vi, we utilize a single critic network for the
approximation of value function Vi, which in the form of

Vi = ω
T
i φ(x)+ εi(x)T (12)

where ωi ∈Rpi is the ideal weight for the single network and
φ(x)∈Rn×pi is the vector of the activation function, pi is the
hidden layer neuron number and εi(x) is the critic network’s
approximation error. The gradient of Vi is expressed as

∇Vi = ∇φ(x)T
ωi +∇εi(x) (13)

The estimated approximation of the ideal value function
Vi is defined as

V̂i = ω̂
T
i φ(x) (14)

where ω̂i ∈Rpi is the estimated weight of the single network,
which is implemented in the single network to estimate the
actual value of Vi.

B. Single Neural Network

To reduce the computational load, the approximation of
control ui is implemented through the single network method,
which is in the form of

ui =−1
2

R−1
ii gT

i (∆φ
T
i (x)ωi +∆ε

T
i (x)) (15)

With the estimated value’s gradient using the weights ωi
in eq. (13), the actual controller can be expressed in the form
of

ûi =−1
2

R−1
ii gT

i ∇φ
T
i (x)ω̂i (16)

Then we add the safety-guarding term (10) to the control
policy in the term of

ub,i = ûi −
αi

2
R−1

ii gi(x)T
∇b(x)T (17)

C. Critic Learning using Concurrent Learning

Based on eq. (7), (14), and (16), we can define the error
of approximating the Hamilton-Jacobi equation, in the form
of

δi = Ω
T
i σi + xTQix+

N

∑
j=1

1
4

ω
T
j σ

′
jGi jσ

′T
j ω j +∇ε

T
i Ωi (18)

where G j = g jR−1
j j gT

j , Gi j = g jR−1
j j Ri jR−1

j j gT
j , σ j =

∇φ(x)( f +∑
N
k=1 gkub,k) and Ωi := σ ′

i f − 1
2 ∑

N
j=1 σ ′

i G jσ
′T
j ω̂ j.

To simplify the notation, we denote ei = ΩT
i σi + xTQix +

∑
N
j=1

1
4 ω̂T

j σ ′
jGi jσ

′T
j ω̂ j and ∇εT

i Ωi =−εham,i, which result in

δi = ei − εham,i (19)

To obtain an admissible control policy u and facilitate
the following optimization, we first combine the historical
and instantaneous data in the form of the total energy-like
objective Ei, which is expressed as

Ei =
1
2

[
σ2

i(
1+σT

i σi
)2 +

M

∑
k=1

(σ k
i )

2(
1+(σ k

i )
T σ k

i

)2

]
(20)

where σ k
i is the k-th historical data of σi. M is the total

number of historical data.
According to the property of the above objective function,

we can obtain the adaptation law based on least squares for
the estimated critic network weight ω̂i as follows.

˙̂ωi =−βi
∂Ei

∂ωi

=−βi
σiei(

1+σT
i σi

)2 −βi

M

∑
k=1

σ k
i ek

i(
1+(σ k

i )
T σ k

i

)2 (21)

where βi is the learning gain for each player, determine the
convergence speed of each player’s single network weight
ωi. Although a higher learning rate βi may accelerate the
convergence speed, it could also be a training disaster due
to the cautiousness of the safety-guarding controller.

V. STABILITY ANALYSIS

In this section, to investigate the stability of the proposed
regular ADP controller, the Lyapunov stability analysis is
presented. First, we introduce the following assumption to
facilitate the stability proof.

Assumption 2. To facilitate the following Lyapunov anal-
ysis, assume that the following bounded conditions hold.

1. The ideal weight ωi of the single network is bounded,
that is, ∥ωi∥ ≤ ω i.

632 
Authorized licensed use limited to: Xian Jiaotong University. Downloaded on April 22,2024 at 14:19:15 UTC from IEEE Xplore.  Restrictions apply. 



2. The approximation error εi(x) of the single network and
its corresponding gradient are bounded, that is, ∥εi(x)∥ ≤ ε i
and ∥∇εi(x)∥ ≤ ∇εmax,i.

3. The activation vector φi(x) of the single network and
its corresponding gradient are bounded, that is, ∥φi(x)∥ ≤ φ i
and ∥∇φi(x)∥ ≤ ∇φ i.

4. The Hamiltonian residual is bounded, that is,
∥∥εham ,i

∥∥≤
εham,i.

5. gi(x) is bounded on Ω, that is, gi(x)≤ gi.
Theorem 1. For N-player dynamical system (1), a forward

invariant set c⊂Rn from (18) which satisfies 0∈ Int(c), and
define b as a barrier function for the multi-player game 1.
Given Assumption 1 ∼ 2 holds. and

giφ j < 0
ρ < 0

βi

(
p+1

2 −2λmin (Γk)
)
< 0

(22)

where ρ =∑
N
i=1

[
βi

p+1
2 ε

2
i −

(
ω iφ i + ε i

)
∑

N
j=1

( 1
2 G jφ i∥ω̂ j∥−giε i

)]
for a short notation.

Then the control policy in (17) and the concurrent
learning-based updating law in eq. (21), ensure that the
interior set Int(c) is forward invariant for the multi-player
game (1). In addition, there exists a global equilibrium point,
and the state converges to zero asymptotically.

Proof. We define the following Lyapunov function for
stability analysis:

VL =
N

∑
i=1

(Vi +Vω,i) (23)

where Vω,i =
1
2 ω̃T

i ω̃i is an additional error term for the single
network weights.

For each player, we have

V̇i =

(
∂Vi(x)

∂x

)T
[

f (x)− 1
2

N

∑
j=1

g j(x)R−1
j j gT

j ∇φ
T
i (x)ω̂ j

]
(24)

Combining the controller (16), Hamilton-Jacobi equation
(7) and Assumption 3, we get

V̇i ≤−ri−
(
ω iφ i + ε i

) N

∑
j=1

(
1
2

G jφ i∥ω̂ j∥−giε i

)
(25)

Differentiating each player’s weight-error term Vω,i result
in the following equation

V̇ω,i = ω̃
T
i

˙̃ωi (26)

Then, given the updating law form (21), the dynamic of
each player’s single network weight error can be expressed
as

˙̃ωi =−βi [Γa(t)+Γk] ω̃i(t)+βiΛa (27)

where

Γa(t) =
σi (σi)

T[
1+(σi)

T
σi

]2 , Γk =
p

∑
k=1

σi
(
σ k

i
)T[

1+
(
σ k

i

)T
σi

]2 (28)

Λa =
σiεham,i[

1+(σi)
T

σi

]2 +
p

∑
k=1

σ k
i εk

ham,i[
1+

(
σ k

i

)T
σ k

i

]2 (29)

Inserting eq. (27) into eq. (26) yields

V̇ω,i ≤ βi

[
p+1

2
−2λmin (Γk)

]
∥ω̃i∥2 +βi

p+1
2

ε
2
hmax,i (30)

Combining inequality (25) and (30) yields

V̇ ≤−
N

∑
i=1

ri +ρ

+
N

∑
i=1

[
giφ i +βi

(
p+1

2
−2λmin(Γk)

)]
∥ω̃i∥2 (31)

For each player, if (22) in Assumption 2 holds, we have
V̇L ≤ 0. Then, according to the theorem of Lyapunov stability,
the stability of the proposed controller (17) is guaranteed.
By the property of forward invariant and the asymptotic
stability, the safety of forcing multi-player game (1) to Nash
equilibrium is guaranteed.

VI. SIMULATION RESULTS

A. Two-Player Problem Setup

To verify the safety-guarding capability of the proposed
method, we investigate in a nonlinear case of nonzero-sum
game for two-player. To test the generality of the safety-
guarding controller, the barrier function is chosen in the
form of both non-convex and convex. We select the nonlinear
control-affine system

ẋ = f (x)+g1(x)u1 +g2(x)u2 (32)

where x∈R2,u1,u2 ∈R, and the nonlinear dynamic is chosen
as

f =


x2 −2x1

−1
2

x1 − x2 +
1
4

x2 (cos(2x1)+2)2

+
1
4

x2
(
sin

(
4x2

1
)
+2

)2


g1 =

[
0

cos(2x1)+2

]
g2 =

[
0

sin
(
4x2

1
)
+2

]
The construction of the value function is depicted in (2),

with weights Q1 = 2Q2 = ∥x∥ and R11 = R12 = 2R21 =
2R22 = 2.

To obtain an approximate online Nash equilibrium solution
for the provided nonzero-sum two-player game, first we
specify a safety-guarding controller design from Section III,
then the concurrent learning-based ADP controller from Part
IV is used together.

To stabilize the two-player game, the objective of our pro-
posed controller is to guarantee that the state x(t) converges
to zero, while making sure that x(t) does not move out of
the safe boundary set ∂c . In this numerical simulation, the
boundary set ∂c have a specified boundary function h(x) =
px2

2 − x1 + 1 defined in (8), where p is the coefficient to
decide the convexity property of the safe set c. For simplicity,
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we choose p =−1 for convex set, and p = 1 for non-convex
set.

The initial state is selected as x0 = [−4,2.2] which is close
enough to the safe set boundary. By creating the barrier
function b(x) = (1/h(x)− 1/h(0))2 and the controller gain
αi = 0.1, a safety-guarding controller is obtained for each
evaluation. To obtain the approximation control policy, we
utilize the Staf kernels from [25] as the activation function.
The learning rates for each player are selected as β1 = 1, β2 =
0.1, and the weights are initialized as ω̂i (t0) = [0.5,0.5,0.5]T

for the convex set, and [3,3,3]T for the nonconvex set.

B. Analytical Solution

To compare with the proposed result and the ideal solution,
first we analyze the equilibrium point’s value function of the
system from (30) as

V ∗
1 =

 0.5
0
1

T x2
1

x1x2
x2

2

 V ∗
2 =

 0.25
0

0.5

T x2
1

x1x2
x2

2


(33)

and the corresponding ADP controller for each player are
expressed as



u∗1 =−1
2

R−1
11 gT

1

 2x1 0
x2 x1
0 2x2

T 0.5
0
1


u∗2 =−1

2
R−1

22 gT
2

 2x1 0
x2 x1
0 2x2

T 0.25
0

0.5


(34)

C. Simulation Results

To demonstrate the effectiveness of the proposed tech-
nique, the system is simulated with and without the safety-
guarding controller in both non-convex/convex state con-
straints scenarios. For the convex case, we set p = −1, the
main result is presented in Fig. 1 and the learning process
is shown in Fig. 2. As presented in Fig. 1, by utilizing the
control strategy from (17) with the added safety-guarding
term, the state x(t) is stabilized to zero state, while never
move out of the safe set. In contrast, the control policy
without the safety-guarding term stabilizes the state to zero,
but in the beginning, the state trajectory violates the security
constraint.

As shown in Fig. 2 and 3, the value functions of Player 1
and Player 2 converge to [0.5000, 0, 1.0002] and [0.2500, 0,
0.5001], respectively, and the value functions and controllers
obtained is:

V̂1 =

 0.5000
0
1.0002

T x2
1

x1x2
x2

2

 V̂2 =

 0.2500
0

0.5001

T x2
1

x1x2
x2

2



-5 -4 -3 -2 -1 0 1
-0.5

0

0.5

1

1.5

2

2.5
Convex safe set

Fig. 1. Trajectories of the two-player nonzero-sum game system with a
convex safe boundary
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Fig. 2. Player 1 value function weights
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Fig. 3. Player 2 value function weights

To demonstrate the generality of the safety-guarding con-
troller, we set a non-convex boundary restriction. Fig. 4
shows the difference in the control effect of the controller
with/without the safety-guarding term. The initial state is
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x0 = [1.5,3], and the state trajectories of both controllers are
the same in the initial period. However, when the safety-
guarding controller approaches the boundary, the safety-
guarding term drags the state trajectory away from the
direction of the reverse gradient of the barrier function.
When the distance from the boundary gradually increases,
the effect of the safety-guarding term gradually disappears
and finally converges to zero. However, the state trajectory
of the original controller directly crosses the state limitation
without any sign of tending to move away from the boundary.
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Fig. 4. Trajectories of the nonlinear system in a non-convex safe set

VII. CONCLUSIONS

In this paper, we introduce a safety-guarding controller to
keep safe exploration in constrained state space. The non-
zero sum game Nash equilibrium solution is obtained by de-
veloping a model-based reinforcement learning architecture.
To deal with the uncertainty of persistence excitation, we
apply concurrent learning methods using both historic and
instantaneous data to train the network without excitation
risks. In order to relax the computation load, we utilize
the single-network technique for the approximation. In the
future, we will investigate the use of a Lyapunov-based deep
neural network to improve approximation accuracy.
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