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Abstract— This paper considers the problem of bounded
rational human behavior in the cooperative human-machine
game. The cooperation between human and machine is a
raising topic for emergency handling, and it is critical to
ensure the safety of human. First, a barrier-function-based state
transformation is developed to ensure the safety constraints
of the human-machine system state. A level-k rationality
structure is then exploited by cognitive hierarchy to learn
human behavior, and the bounded rational behavior is obtained
by using Adaptive Dynamic Programming (ADP). Inspired
by behavior modeling from sociology, a softmax probabilistic
decision distribution is utilized to model human behavior, which
imitates the true impact of human in the cooperative game.
Finally, a simulation is implemented to test the effectiveness of
the proposed behavior, which demonstrates that the full state
constraints and stabilization are guaranteed.

I. INTRODUCTION

Human-machine fusion decision is an raising topic in
emergency handling [1]–[3]. The sudden occurrence of
emergencies in safety-critical systems poses challenges in
acquiring sufficient information regarding emergent situa-
tions for human decision-making. The machine is able to
gather enough information in a relatively short period to
effectively manage the crisis. The collaboration of human
and machine is essential and significant in safety-critical
system. In recent years, game-based system have gained
significant interest due to their extensive usage in various
field, including economics, robotics, automated driving and
cyper-physical-systems [4]–[7]. The objective of collabora-
tion between humans and machines is to attain common
benefits. Nevertheless, specific constraints must be complied
with to guarantee the safety of the human player.

Safe reinforcement learning is a method involving the
interaction between agents and their environment to learn
the optimal controller. This approach includes designed
mechanisms to guarantee that specific safety constraints are
satisfied. The authors of [8], [9] introduce a novel struc-
ture that combines actor-critic-identifier to identify system
dynamics, resulting in enhanced performance in danger de-
tection. A safe-guaranteed controller is proposed to avoid
the state trajectory from causing collisions with non-convex
boundary limits in [10]. In [11]–[13], a barrier-function-
based transformation is proposed, which converts safety issue
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to stabilization problem to meet the full state constraints of
a rectangular. The authors in [14]–[16] integrate the barrier
function and reward function to penalize the behavior of
reaching the boundary.

The theory of cognitive hierarchy has gained prominence
in recent years. An novel ADP approach of solving the non-
equilibrium game is developed to achieve the stabilization
without acquiring system dynamic [17]–[19]. The work of
[20] propose a cognition modeling game architecture which
incorporates unmanned aircraft with the Airspace System.
The bounded level reasoning structure is proposed to predict
the decision-making process of human-beings, which is
constrained by the limited rationality of their beliefs [21].
The cooperation game of human and self-driving vehicles is
investigated to achieve collaborative human-vehicle decision-
making in [2], [22], [23]. The authors of [17], [24], [25]
employed the ’softmax’ function to replicate the stochastic
distribution of various levels of human behavior, based on
the concept of bounded rationality.

The contributions of this paper are threefold: 1) the
safe human-machine cooperative game is formulated using
barrier-function-based state transformation, which guarantees
the full state constraints of the safety-critical system involved
human. 2) A level-k rationality architecture is developed base
on the theory of Cognitive Hierarchy. the bounded rational
behavior is obtained via online learning method of adaptive
dynamic programming. 3) Softmax probabilistic distribution
model is utilized to simulate the true bounded rationality of
human behavior.

This paper is organized as follows. Section II illustrates
the basic setup for the cooperative human-machine game.
Section III outlines the barrier-function-based transformation
system. Section IV developed a bounded rationality level-
k architecture via theory of cognitive hierarchy. Section V
presented a model-based reinforcement learning structure to
implement the online approximation. Section VI modeled the
human player impact by a probabilistic approach. Section VII
verifies the effectiveness of the proposed method. Section
VIII concludes the work of this paper.

II. PRELIMINARIES AND PROBLEM FORMULATION

To investigate the human-machine cooperative game, we
consider the continuous-time nonlinear dynamical system
with affine input ∀t ≥ 0,

ẋ = f(x) + gh(x)uh + gm(x)um, (1)

where x = [x1 · · ·xn]
T ∈ Rn is the system state, ui ∈ Roi ,

for i = h,m is the control input of human and machine
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respectively, f(x) : Rn → Rn represent the nonlinear
dynamic of the cooperative system. gh(x) : Rn → Roh and
gm(x) : Rn → Rom represent the input matrix gain of human
and machine respectively. Functions f(x), gh(x) and gm(x)
are Lipschitz and continuous.

Due to the cooperation of human-machine system, we
consider the performance index of human and machine is
exactly the same, which is defined as,

Jcoop (x0;uh, um) =
1

2

∫ ∞

0

rcoop (x, uh, um) dτ, (2)

where rcoop (x, uh, um) = M(x) +
∑

j∈{h,m} u
T
j Rjjuj is

the fully cooperative reward function of human-machine
system, M(x) is a quadratic function of state x.

Definition 1. Input pair (u⋆
h, u

⋆
m) is the Nash equilibrium,

if satisfies, Jcoop (x0;u
⋆
h, u

⋆
m) ≤ Jcoop (x0;uh, u

⋆
m) , ∀uh

and Jcoop (x0;u
⋆
h, u

⋆
m) ≤ Jcoop (x0;u

⋆
h, um) , ∀um.

The best response of the fully cooperative human-machine
system is the Nash equilibrium, however, the system state
involving human beings should always satisfy the safe con-
straints. To ensure safety, a barrier-function-based transfor-
mation system is given in the following subsection.

III. BARRIER-FUNCTION-BASED STATE
TRANSFORMATION SAFE-CRITICAL SYSTEM

A. Barrier Function Transformation

In this subsection, we first consider the problem of state
constraints. To simplify the notation of safety limits, the
polygonal state constraints set is given as x ∈ O, where
O = {x ∈ Rn|a ≤ Cx + p ≤ A}, a = [a1, ..., al]

T ∈ Rl,
A = [A1, ..., Al]

T ∈ Rl, p = [p1, ..., pl]
T ∈ Rl and

C ∈ Rl×n. The problem of the safety-critical game can be
formulated as follows.

Problem 1. Consider the nonlinear system (1), and given
the cooperative performance index (2), find the Nash equi-
librium policies (u⋆

h, u
⋆
m), with satisfying x ∈ O.

To simplify the analysis procedure without loss of the
generality, we choose the state constraint in the form of
xk ∈ (dk, Dk) , k = 1, . . . , n. The lower constraint and
upper constraint satisfy dk < 0 < Dk and ∥dk∥ ̸= ∥Dk∥,
which means the state constraints is asymmetric.

To address the state constraint issue, the transformation of
the system state using the barrier function is introduced. We
transform the safety problem with constraint x ∈ O into a
stabilization problem.

Based on the constraint xk ∈ (dk, Dk) , k = 1, . . . , n, we
select the barrier function in the form of

b(xk; dk, Dk) = log

(
Dk

dk

dk − xk

Dk − xk

)
.

The inverse function of the barrier function b(xk; dk, Dk)
on the interval (dk, Dk) is

b−1(yk; dk, Dk) =
Dkdk(e

yk
2 − e−

yk
2 )

dke
yk
2 −Dke−

yk
2

.

With the barrier function b(·) and the state x ∈ Rn

of system (1), the system state transformation via barrier
function can be summarized as

sk = b (xk; dk, Dk) = bk,

xk = b−1 (sk; dk, Dk) = b−1
k , ∀k = 1, . . . , n.

(3)

By utilizing the chain rule, we obtain the derivative of
transformed state sk with respect to time as

dsk
dt

=

(
dxk

dsk

)−1
dxk

dt
.

The dynamics of transformed state s = [s1, ..., sn]
T can

be expressed as

ṡk =
ẋk

db−1(sk;dk,Dk)
dy

= Fk(s) +Gh
k(s)uh +Gm

k (s)um, (4)

where Fk(sk) = τ(sk) × f
([

b−1
1 , ..., b−1

n

]T)
, Gh

k(s) =

τ(sk) × gh

([
b−1
1 , ..., b−1

n

]T)
and Gm

k (s) = τ(sk) ×

gm

([
b−1
1 , ..., b−1

n

]T)
with τ(sk) =

(
db−1(yk;dk,Dk)

dyk

)−1

.
Then the transformed system dynamics (4) could be writ-

ten in the following compact form of

ṡ = F (s) +Gh(s)uh +Gm(s)um, (5)

where F (s) : Rn → Rn is the nonlinear dynamic of
transformed system. Gh(s) : Rn → Roh and Gm(s) : Rn →
Rom are the transformed input gain matrix.

B. Nash Equilibrium in Transformed System

Based on the transformed system dynamics of state s, the
Nash equilibrium for (5) shall be obtained to achieve optimal
control.

The goal of the previous human-machine cooperative
game converts to stabilize the transformed system (5), with
minimum resource consumption. The minimization problem
can be solved by minimizing the value function as

Vcoop (s, uh, um) =

∫ ∞

t

rcoop (s, uh, um) dτ. (6)

Definition 2. Consider system (5), a pair of policies
uh,m = {uh, um} is admissible control pair, if uh,m stabi-
lizes the transformed system (5), and value function V from
(6) is finite.

Thus, for the optimality of controlling transformed system
(5), an admissible pair of policies u∗

h,m = {u∗
h, u

∗
m} is the

Nash equilibrium, which obtained the optimal value function
in the form of

V ∗
coop (s, uh, um) = min

uh,um

∫ ∞

t

rcoop (s, uh, um) dτ. (7)

Define the Hamiltonian function for the transformed
human-machine cooperative system as

H (s,∇V, uh, um) ≜ (∇V )
T [

F (s) +Gh(s)uh +Gm(s)um

]
+ rcoop (s, uh, um) , (8)

where ∇V =
∂Vcoop

∂s is the gradient of the value function.
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By differentiating the Hamiltonian function and applying
the stationary conditions, in the form of ∂Hi

∂ri
= 0, we can

obtain the optimal controller pair

u⋆
i (s) = −1

2
R−1

i

(
Gi(s)

)T ∇V ⋆, i = h,m. (9)

Substituting the optimal controller (9) into the Hamiltonian
(8) yields the Hamilton-Jacobi-Isaacs(HJI) equation in the
form of

0 = (∇V ∗)
T

F (s)− 1

2

∑
j∈{h,m}

Gj(s)R−1
j (Gj(s))T∇V ∗


+Q(s) +

1

4

∑
j∈{h,m}

(∇V ∗)
T
Gj(s)R−1

j (Gj(s))T∇V ∗.

(10)
According to Lemma 1 from [12], given the transformed

system (5), we can solve the full-state constraints by finding
a pair of Nash Equilibrium policies uh,m = {uh, um}. In
the next section, the cognitive hierarchy will be introduced
to obtain a level-k bounded rationality.

IV. LEVEL-k BOUNDED RATIONALITY

Cognitive hierarchy theory shows that humans think strate-
gically, which means they develop beliefs by predicting
which level of rationality others would perform, and sub-
sequently select optimal responses based on those beliefs.
In this section, we introduce a level-k bounded rationality
structure to obtain different levels of intelligence.

A. Initial Policy (level-0) of Human

For the cooperative human-machine system, level-0 ratio-
nality represents an instinctive reaction, which means the
behaviors of players are non-cooperative. To prevent the
potential stochastic danger, we will obtain human level-0
rationality by solving an optimization problem, which is in
the form of minimizing a specific value function

V 0
uh

(s0) = min
u0
h

∫ ∞

0

(
M(s) + (u0

h)
TRhu

0
h

)
dτ, (11)

which is subject to the dynamic of the system ṡ = F (s) +
Gh(s)u0

h. According to the optimal control theory, the sta-
tionary condition for the optimization problem (11) is

u0
h(s) = −1

2
R−1

h (Gh(s))T∇V 0
h , (12)

where ∇V 0
h =

∂V 0
uh

(s)

∂s , the value function V 0
uh

is known to
satisfy the Hamilton-Jacobi-Bellman(HJB) equation, namely

H
(
s,∇V 0

h , u
0
h

)
=
(
∇V 0

h

)T [
F (s) +Gh(s)u0

h

]
+ rcoop

(
s, u0

h, 0
)
= 0.

(13)

B. Level-1 Policy of Machine

Assuming the human player always acts the level-0 policy,
the level-1 policy of the machine could be solved subse-
quently, which is the optimal response to the initial level-0
policy from the human.

To acquire the level-1 policy of the machine, an optimiza-
tion problem is established as follows

V 1
um

(s0) = min
u1
m

∫ ∞

0

(
M(s) + (u1

m)TRmu1
m

+ (u0
h)

TRhu
0
hdτ,

(14)

which is subject to the dynamic of the system ṡ =
F (s) + Gh(s)u0

h + Gm(s)u1
m. The optimal policy for the

optimization problem (14) is

u1
m(s) = −1

2
R−1

m (Gm(s))T∇V 1
m, (15)

where ∇V 1
m =

∂V 1
um

(s)

∂s , the value function V 1
um

is known to
satisfy the HJI equation, namely H

(
s,∇V 1

d , u
0
h, u

1
m

)
= 0.

C. Level-k and Level-(k + 1) Policies

An iterative procedure will be employed to formulate
higher-level rational policies for the human and machine
respectively. This procedure involves iterative optimizations
of policies by the human and machine, with a belief that
their partner employs lower-level rationality.

Interacting with the machine which employs level-(k− 1)
rationality, the human player acquires level-k thinking, by
solving the following optimization problem

V k
uh

(s0) = min
uk
h

∫ ∞

0

(
M(s) + (uk

h)
TRhu

k
h

+ (uk−1
m )TRmuk−1

m dτ,

(16)

which is subject to the dynamic ṡ = F (s) +
Gh(s)uk

h +Gm(s)uk−1
m . The corresponding HJI equation is

H
(
s,∇V k

h , uk
h, u

k−1
m

)
= 0.

The stationary condition leads to the formulation of the
level-k policy of human

uk
h(s) = −1

2
R−1

h (Gh(s))T∇V k
h . (17)

Similarly, the level-(k + 1) rationality could be obtained
by solving the subsequent minimization problem

V k+1
um

(s0) = min
uk+1
m

∫ ∞

0

(
M(s) + (uk+1

m )TRmuk+1
m

+ (uk
h)

TRhu
k
hdτ,

(18)

which is subject to the dynamic ṡ = F (s) + Gh(s)uk
h +

Gm(s)uk+1
m . The optimal policy for the optimization prob-

lem (18) is

uk+1
m (s) = −1

2
R−1

m (Gm(s))T∇V k+1
m . (19)

The HJI equation satisifies H
(
s,∇V k+1

d , uk
h, u

k+1
m

)
= 0.

Lemma 1. [19] Consider the transformed system (5), given the
human and machine player bounded level-k and level-(k+1) ratio-
nality respectively, the corresponding value functions are positive
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definite. If the following conditions hold

uk
h(0) = 0, uk+1

m (0) =0,

V̇ k
uh

(s) < 0, V̇ k+1
um

(s) <0, ∀s ̸= 0,

H
(
s,∇V k

h , uk
h, u

k−1
m

)
=0, ∀s,

H
(
s,∇V k+1

d , uk
h, u

k+1
m

)
=0, ∀s,

H
(
s,∇V k

h , uh, u
k−1
m

)
⩾0, ∀s, uh,

H
(
s,∇V k+1

d , uk
h, um

)
⩽0, ∀s, um.

(20)

Then, the pair of bounded rational policies uh,m = {uk
h, u

k+1
m } is

the Nash equilibrium.
In the next section, the adaptive dynamic programming(ADP)

method would be used to approximate bounded rationality online.

V. ONLINE LEARNING VIA ADAPTIVE DYNAMIC
PROGRAMMING

In this section, two critic networks are utilized to obtain the value
functions Vi, i ∈ {h,m} of the human and machine respectively.
The corresponding policies of the human and machine are denoted
as uj

i for simplification. Up to level-k, we select the single-layer
network to approximate the value function as

V j
i = (W j

i )
Tϕj(s) + ϵji (s), (21)

where Wi ∈ Rpi represent the ideal neuron weight of the single-
layer network and ϕ(x) ∈ Rn×pi is the corresponded activation
function, pi is the number of hidden layer neuron and ϵi(x) is the
approximation error of single-layer network. The gradient for the
value function is

∇V j
i = (∇ϕj(x))TW j

i + (∇ϵji )
T (s). (22)

The estimated value function V̂i is expressed as

V̂ j
i = (Ŵ j

i )
Tϕj(x), (23)

where Ŵ j
i ∈ Rpi is the estimated weight of the single network.

To reduce the computational load, the general policy of the
human and machine, uj

i , is approximated by a neural network
respectively as

uj
i = −1

2
R−1

i (Gi(s)T ((∇ϕj
i (s))

TW j
i + (∇ϵji (s))

T ). (24)

With the estimated value’s gradient using the weights Wi in (22),
the actual controller can be expressed in the form of

ûj
i = −1

2
R−1

i Gi(s)T (∇ϕj
i (s))

T Ŵ j
i , (25)

Based on the estimation of the value function (23), and policies
(25), the approximation error of the HJB equation could be defined
as

H
(
s,∇ϕj

i , u
j
i

)
=

∑
l=h,m

(uj
l )

TRiul +M(s)

+ [(W j
i )

T∇ϕj
i + (∇ϵji )

T ](F +
∑

l=h,m

Gluj
l ).

(26)
For the simplification of notation, denote that H

(
s,∇ϕj

i , u
j
i

)
=

ejH,i, H
(
s,∇ϕj

i , û
j
i

)
= eji and ωj

i = ∇ϕi(F +Ghuj
h +Gmuj

m).
To obtain the approximated admissible policy uj

h,m, an opti-
mization procedure is established. To facilitate the optimization, we
construct the energy-like objective Ei by combining the historical
and instantaneous data, which is could be defined as follows

Ej
i =

1

2

M∑
k=0

(eji,k)
2(

1 + (ωj
i,k)

Tωj
i,k

)2 , (27)

where ωj
i,k, k = 1, ...,M is the historical data of ωj

i , ωj
i,0 is the

current record of ωj
i . M is the length of the historical stack. Define

ωj
i =

[
ωj
i,1...ω

j
i,M

]
as the historical data stack.

Based on the property of the objective function Ej
i , by utilizing

the least-square method, the adaptive learning law for the estimated
critic network weight Ŵi can be derived as

˙̂
W j

i = −aj
i

∂Ej
i

∂Ŵ j
i

= −aj
i

M∑
k=0

ωj
i,ke

j
i,k(

1 + (ωj
i,k)

Tωj
i,k

)2 , (28)

where the learning rate of each bounded rational level, denoted as
aj
i , plays a crucial role in determining the convergence speed of

network weights Wi.
In order to examine the stability of the proposed regular ADP

controller, the Lyapunov stability analysis is presented. First, the
error dynamic of W̃ j

i is given as:

˙̃W j
i (t) = −aj

i

M∑
k=0

ωj
i,k

(ωj
i,k)

Tωj
i,k + 1

[
(ωj

i,k)
T W̃ j + ek,jH,i

(ωj
i,k)

Tωj
i,k + 1

]
. (29)

Lemma 2. [12] Critic Weights W j
i is uniformly ultimately

bounded (UUB) under the following assumption of 1. rank(ωj
i ) =

pi; 2. ejH,i is upper bounded by ejHmax,i

VI. HUMAN IMPACT MODELING AND INTERACTING
WITH MACHINE

Within this section, an algorithmic framework will be proposed,
in which a machine cooperates with a human possessing varying
levels of cognitive ability to pursue the same goal. In order to adopt
our result in the real human-machine scenario, the fixed-level policy
throughout the course of the interaction should be refrained, which
imposes limitations on humans with regard to their utilization of
rationality and ignores the variability of human behavior.

As mentioned in the previous section, the machine player calcu-
lates the level-k rational policies through the implementation of an
ADP algorithm that cooperates with human policies. As a result,
rather than using a precise level of human behavior, a probabilistic
distribution of human policies is utilized to model the stochastic and
dynamic effects resulting from human behavioral decision-making.

Assuming that the machine is capable of precisely measuring
human policies’ impact on the system. The error of optimism is
defined as the difference between the measured human behavior
denoted Uh(τ), and the human policy of level-k.

rk =

∫
Tint

∥∥∥∥Uh(τ) +
1

2
R−1

h (Gh)T (∇ϕj
h)

T Ŵ j
h

∥∥∥∥ dτ, (30)

where j ∈ {1, . . . , km}, km is the maximum level of human ratio-
nality been computed. Remark that (30) is the norm of the measured
human policies’ distance from each cognitive level computed by the
given ADP algorithm.

Consider the machine player performing at the
optimal response, namely the Nash equilibrium Uh(t) =
− 1

2
R−1

h (Gh)T (∇ϕh)
TW ∗

h , ∀t ≥ 0.
According to Theorem 1, it is achievable to train any given level-

k to attain convergence with the optimal response strategy of a
human, which in the form of uj

h(t) = − 1
2
R−1

h (Gh)T (∇ϕj
h)

T Ŵ j
h .

Moreover, given Lemma 1 holds, the level-k rationality will ap-
proach infinity and ultimately converge to the Nash solution. This
implies that the Nash solution represents the limit of the level-k
cognitive hierarchy, i.e., limj→+∞

∥∥V j
h − V ⋆

h

∥∥ = 0, it provides

lim
j→+∞

uj
h(t) = lim

j→+∞

(
−1

2
R−1

h (Gh)T (∇ϕj
h)

T Ŵ j
h

)
=− 1

2
R−1

h (Gh)T (∇ϕh)
T Ŵ ∗

h = Uh(t).

(31)
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Consequently limk→+∞ rk = 0, the following probabilistic
distribution model would be established based on the error rk.

During each interval of interaction Tint , the error rk will be
organized in a vector r of the form r =

[
r1, r2, . . . , rkm

]
.

To formulate the bounded rational human player’s behavior, the
softmax function is utilized to transform the error vector r into
a bounded value vector, i.e., σ =

[
σ1, σ2, . . . , σkm

]T
, the basic

element σk could be expressed as

σk =
e−rk∑km
i=1 e

−ri
. (32)

Then, the policy of the human player could be represented by
the proposed probabilistic distribution as follows

P(Uh = ûk
h) = σk. (33)

It is notable that the choice map known as "softmax" is a routine
selection for the purpose of modeling human decision-making [24].
Minor errors are indicative of greater chances to choose the suitable
bounded rational behavior.

For the purpose of determining the safe and stabilizing policies
of level-k human-machine cooperation, an online ADP algorithm
is formulated in the following Algorithm 1.

Algorithm 1: The ADP algorithm for the Human-
Machine Cooperative game

1 Given the initial state x0, gain matrix Ri, learning rate aj
i .

for k = 0,...,km do
2 for i=h,m do
3 Initialize weights Ŵ k

i , set the behavior of the
cooperator as uk−1

i′ .
4 Learn the optimal behavior uk

i , with system (5) and
update law (28).

5 end
6 end
7 for k = 0,...,km do
8 Obtain the probabilistic distribution P(Uh) from (33)

by interacting with each rational level uj
m.

9 end
10 Apply modeled human behavior Uh, learn the optimal

machine behavior Um, with system (5) and update law
(28).

VII. SIMULATION RESULTS

A. System Setup
Consider the following nonlinear affine-input system from [12]

ẋ1 =x2,

ẋ2 =− x2 −
x1

2
+

x2 (cos (2x1) + 2)2

4
+

x2 (sin (2x1) + 2)2

4
+ (sin

(
4x2

1

)
+ 2)uh + (sin

(
4x2

1

)
+ 2)(x)um.

(34)
where x(t) ∈ R2 is the original state, ui ∈ R, i = h,m is the
policy of the human and machine player.

To stabilize the original system (34), the objective of our
proposed controller is to guarantee that the state x(t) converges
to zero while making sure that the state does not move out of the
arbitrary safe boundary, namely x ∈ O, we give the following exact
numerical form expressed as

O = {(x1, x2)|xi ∈ (ai, Ai) , ∀i ∈ {1, 2}},

where a1 = −1.3, a2 = −3.1, A1 = 0.5, and A2 = 0.5.
The initial state is selected as x0 = [−1,−3]. The learning

rates for the human and machine player are selected as a1 = 1,
a2 = 1 respectively, and the weights are initialized as Ŵ j

i (t0) =
[2, 2, 2]T , i = h,m, j = 1, ..., km.

The cooperative reward function is defined as

r (x, uh, um) = M(x) +
∑

j∈{h,m}

uT
j Rjuj , (35)

where M(x) = xTx,Rh = 2I2 and Rm = I2.
In the simulation, the rationality of human and machine is up

to level-5, which is smart enough to imitate the variety of human
behavior. After the learning procedure, the human impact modeling
algorithm mentioned in previous section will be utilized to model
a bounded rational human policy map.

B. Simulation Results
The learning process of the machine critic weights is shown in

Fig. 1, which is obtained by interacting with the modeled human
impact in the human-machine cooperative game. The approximated
value function of cooperative game is convergent. The probabilistic

0 5 10 15 20 25 30
1.4

1.6

1.8

2

2.2
Critic Weights of the machine

Fig. 1. machine player’s value function weights

distribution of modeled human behavior is presented in Fig. 2,
including intelligence from level-1 to level-5. The policy of level-3
has the highest probability, while level-1 has the lowest probability
and the other levels have the highest probability. The probability of
the other levels is about the same, and such a distribution pattern
is consistent with the intuition of the variety of human action.

Probabilistic Human Behavior Modeling

1 2 3 4 5
Bounded Rationality Level

0

0.05

0.1

0.15

0.2

0.25

0.3

Fig. 2. Modeled human impact’s distribution

The main result is presented in Fig. 3, where the state trajec-
tories of the transformed system and non-transformed system are
presented. The trajectory of the non-transformed system is reaching
out the safe boundary of rectangle state constraint O, which may
cause great damage to the human player due to the vulnerability of
human-beings. With the transformed system, the human-machine
cooperation finally stabilize the state without violating the safety
constraint.
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VIII. CONCLUSIONS

This research investigates the issue of bounded rationality in
human behavior for the setting of a cooperative game involving
both humans and machines. Cooperation between humans and
machines is an emerging subject in emergency management, and
it is necessary to guarantee human safety. Initially, a state trans-
formation based on barrier function is formulated to guarantee
the safety constraints of the state of the human-machine system.
The cognitive hierarchy utilizes a level-k Rationality Framework to
develop knowledge of human behavior, while Adaptive Dynamic
Programming is employed to attain bounded rational behavior.
Drawing inspiration from sociological behavior modeling, a soft-
max probabilistic decision distribution is employed to mimic human
behavior. Finally, a simulation has been implemented to evaluate
the efficacy of the proposed framework, revealing that full state
limitations and stabilization are ensured.
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