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Preliminaries: quadrotor dynamics

According to Newton's Second Law, the
equilibrium of forces is modeled as:

b
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v= buxbyp 4 [nBE (1)
m

m

Assuming that the angle is small enough,
dynamics can be abbreviated as:
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where *p is the position of the quadrotor, *( is the position, *v is

the velocity, and *w is the angular velocity.
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Preliminaries: obstacle modeling

For the obstacle modeling, three regions of the
obstacle x,; are defined:

@ Detection Region D;: Triggering the i E:f‘MMAD
execution of obstacle avoidance strategy. o
® Buffer Region A;: Buffer layer for possible
upcoming collisions with obstacles.

© Obstacle Region O;:Colliding with the
obstacle after entering this region.

Design function s;(x) to characterize the regions of obstacle X, ;:

07 do,i > Do,iv

2 _p2.
s-(X) _ h+h COS(WW), Ro,i < do,i < Do,h b+1l=1,
' I 4 | Foi"loi < do i <R, by — Iy =21
o + 3COS(7TR2.7r2.)’ fo,i < do,i & Ro,i,
1, do,i < ro,i7
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Problem formulation: Control system and objective

Nonlinear tracking control system

Defining the tracking desired trajectory error e = x4 — x, then the
path tracking model of the quadrotor can be expressed as:

N
é= f(e)—l—Zg;(e)ui (3)

where f and g is the quadrotor dynamics, u; is the control input.

Performance index

To obtain the tracking controller, design J; in quadratic form:

0

00 00 N
Ji(eg,u(+)) = / ri(e(t), u)dt = / (Qi(e) + Z uJ-TR,-juj)dt
t =1
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Problem formulation: Finding Nonzero-sum Game Optimal Controller

The following optimization problem is established and theoretically
analyzed and solved:

@ Optimization objective: Value Function (#ME&#):

Vi (x) = u(.)Ig‘iSI(lXO)Ji (x0,u(:)), xo €R” (4)

® Condition for optimization : Hamiltanian (X% R#HEF):
H(e,u, V") £ re,u) + (AVy T(F + 20, giui)  (5)

© Pontryagin’s maximum theory-based optimization solution:

1
uf(e) £ argminH (e, uj, V,.’T) ==

s SRi'eT (AT ()
u m
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Safe RL tracking control: Definitions

In the quadrotor control application, controllers that lack security
are generally difficult to apply, so this research will theoretically
analyze and design a safe RL-based controller

1. Definition: Safety Region ¢ 2. Definition: Barrier Function

Define ¢ be the safety state Design the barrier function b(x)?:
region and h(x).a be the 1 1,
boundary function: b(x) = [W — W]
c={xeR"| h(x) >0}
dc ={x € R" | h(x) = 0} * Vx(t) € Int(c), |b(x)| < o0
Int(c) = {x € R" | h(x) > 0} ® limy,9c b(x) = o0
® H(0)=0

?Junkai Tan et al. “Nash Equilibrium Solution Based
on Safety-Guarding Reinforcement Learning in
Nonzero-Sum Game”. In: 2023 International Conference
on Advanced Robotics and Mechatronics (ICARM). -
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?Junkai Tan et al. “Safe Human-Machine Cooperative
Game with Level-k Rationality Modeled Human Impact”.
In: 2023 IEEE InternationatiConference on Pevelopenent:
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Safe RL tracking control: NN Design

Neural networks design
According to Weierstrass theorem, a neural network (NN) is
designed to approximate the value function and controller.
® Approximate value function:
Vile,x) = WiToi(e) + b(x) + ei(e)
® Approximate controller:
uf = —3R; ' gi(e)T (¢ (e)Wr + b (x) + ¢/ (x))

1

Optimization objective: value function

Value function Vj(xp) is the extremum of performance J;(xp, u(-)):

0o N
Vi (9, x0) = Hl(lgl Ji (eo, %o, u(+)) = m(%l/ (Q,-(e)—i-z ujTR;juj—i—b(x))dt
uf(- uf(- 0 J:l
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Safe RL tracking control: Online Learning

To realize the online update of NN weights, Hamiltonian error is
set here as the base element of the update target

6 =Q o + xTQix + Z 1% FoiGioltwi+ Vel Qi (7)
j=1
The optimizing object set as normalized least squares Hamiltonian
error:
M k)2

1 a,-2 (of
S 203

(1+0; ‘7")2 k=1 (1+(0;<)TU:{<)2

The NN is updated both using current data and historical data:

(8)

m k  k

oi€j oO; €e;
= _BI /Bi _6" § : — 9
8w, (1+UiT‘7i)2 k=1 (1+(U;<)TU;()2 ©)
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Safe RL tracking control: Stability Theory

Theorem1: Asymptotic stability

NN weights are asymptotically stable as following conditions are
met: —
gi¢; <0
p<0 (10)
BI (p+1 - )\min (Fk)) <0

where p= SV, [5:2418 — (@, +2) DI (G514 - &)

Proof: Set the Lyapunov function

N

Vi=> " (Vi+ Vi) (11)

where V,, ; =
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Safe RL tracking control: Stability Theory

According to the given assumptions, the following inequality holds:

: _ N
Vis-n-@d+e) Y (3601u-gm) (12

j=1
. p+1 p + 172
Vi < Bi 5 2Amin (I') ||°-’IH + Bi €hmax,i (13)
) N
V<- Z ri+p
= (14)
N p+1
+3 [m + 8 ( - 2Amm<rk>ﬂ ]l
i=1

So V, <0 holds, i.e., the asymptotic stability of the weights is
proved
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Experiment Setup

The detailed experiment setup is listed as follows:
@ Operation platform: Rflysim, Matlab Simulink.
@ Aircraft model: DJI-F450 quadrotor.
© Control frequency: 30Hz.
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1: Learning process of NN
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Experiment Results

The trajectories of obstacle avoidance tracking control are shown
in figd.

Quadrotor trajectory
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Experiment Setup

The detailed experiment setup is listed as follows:
@ Operation platform: Rflysim motion capture OptiTrack.
® Aircraft model: Droneyee-X150 quadrotor.
© Control frequency: 30Hz.

v

e
(o — o
PERNETYETETY, . e

4: Droneyee-X150 quadrotor  [E] 5: Motion capture OptiTrack
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Experiment Results

The learning process of the NN weight is presented in fig3. The
control input to the quadrotor is showed in fig4.

State-following neural network weights Control input

0 50 100 150 200 250 0 50 100 150 200 250
time(s) time(s)

6: NN weight learning process 7: Control input to the
quadrotor
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Experiment Results

The positions and tracking error of the quadrotor are presented in
figh and figb, respectively.
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8: Desired and actual position 9: Tracking error of quadrotor
of quadrotor
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Experiment Results

———DMP-based trajactory  ® Take-offpoint  ® 280s © 6285
Quadrotor trajactory  ® _Land point 4445 ® 7575

Y-axis X-axis

10: 3-Dimension trajectories of  [&] 11: Experiment environment
quadrotor
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Thanks for your listening
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