Safe reinforcement learning-based tracking control with application to quadrotor obstacle avoidance

Junkai Tan

Electrical Engineering, Xi'an Jiaotong University

2024.4.9

- 1 Preliminaries and Problem Formulation
- 2 Safe Reinforcement Learning Tracking Control
- 3 Simulation and Hardware Experiment

- 1 Preliminaries and Problem Formulation
- 2 Safe Reinforcement Learning Tracking Control

Preliminaries: quadrotor dynamics

According to Newton's Second Law, the equilibrium of forces is modeled as:

$${}^{b}\dot{\mathbf{v}} = -{}^{b}\omega \times {}^{b}\mathbf{v} + \frac{{}^{b}F}{m} + \frac{R_{n}^{b}\mathbf{e}_{3}g}{m} \qquad (1)$$

Assuming that the angle is small enough, dynamics can be abbreviated as:

$${}^{n}\dot{\mathbf{v}}_{h} = \frac{f}{m} \begin{bmatrix} \cos\psi & \sin\psi \\ \sin\psi & -\cos\psi \end{bmatrix} \begin{bmatrix} \theta \\ \varphi \end{bmatrix} = \frac{f}{m} A_{\psi} \Theta_{h}$$

$${}^{n}\dot{\mathbf{v}}_{z} = g + \frac{f}{m}$$
(2)

where *p is the position of the quadrotor, * Ω is the position, *v is the velocity, and $^*\omega$ is the angular velocity.

Detection Region D.

→ Buffer Region A Obstacle Region O.

Preliminaries: obstacle modeling

For the obstacle modeling, three regions of the obstacle $x_{o,i}$ are defined:

- **1** Detection Region \mathcal{D}_i : Triggering the execution of obstacle avoidance strategy.
- **2** Buffer Region A_i : Buffer layer for possible upcoming collisions with obstacles.
- **3** Obstacle Region \mathcal{O}_i :Colliding with the obstacle after entering this region.

$$s_{i}(x) = \begin{cases} 0, & d_{o,i} > D_{o,i}, \\ l_{1} + l_{1} \cos(\pi \frac{d_{o,i}^{2} - R_{o,i}^{2}}{D_{o,i}^{2} - R_{o}^{2}}), & R_{o,i} < d_{o,i} \leq D_{o,i}, \\ l_{2} + l_{3} \cos(\pi \frac{d_{o,i}^{2} - r_{o,i}^{2}}{R_{o,i}^{2} - r_{o,i}^{2}}), & r_{o,i} < d_{o,i} \leq R_{o,i}, \end{cases} \begin{cases} l_{2} + l_{3} = 1, \\ l_{2} - l_{3} = 2l_{1} \\ 1, & d_{o,i} \leq r_{o,i}, \end{cases}$$

Problem formulation: Control system and objective

Nonlinear tracking control system

Defining the tracking desired trajectory error $e = x_d - x$, then the path tracking model of the quadrotor can be expressed as:

$$\dot{e} = f(e) + \sum_{i=1}^{N} g_i(e) u_i$$
 (3)

where f and g is the quadrotor dynamics, u_i is the control input.

Performance index

To obtain the tracking controller, design J_i in quadratic form:

$$J_i(e_0, u(\cdot)) \triangleq \int_t^\infty r_i(e(t), u) dt = \int_0^\infty (Q_i(e) + \sum_{j=1}^N u_j^T R_{ij} u_j) dt$$

Problem formulation: Finding Nonzero-sum Game Optimal Controller

The following optimization problem is established and theoretically analyzed and solved:

① Optimization objective: Value Function (价值函数):

$$V_{i}^{*}\left(x_{0}\right) \triangleq \min_{u(\cdot) \in \mathcal{S}\left(x_{0}\right)} J_{i}\left(x_{0}, u(\cdot)\right), \quad x_{0} \in \mathbb{R}^{n}$$
 (4)

② Condition for optimization: Hamiltanian (汉密尔顿算子):

$$H\left(e, u, V_i^{\prime T}\right) \triangleq r_i(e, u) + \left(\Delta V_i^{*T}\left(f + \sum_{j=1}^N g_j u_i\right)\right)$$
 (5)

3 Pontryagin's maximum theory-based optimization solution:

$$u_i^{\star}(\mathbf{e}) \triangleq \underset{u \in \mathbb{R}^m}{\operatorname{arg\,min}} H\left(\mathbf{e}, u_i, V_i^{\prime \mathrm{T}}\right) = -\frac{1}{2} R_{ii}^{-1} g_i^{\mathsf{T}} (\Delta V_i)^{\mathsf{T}}$$
 (6)

- Preliminaries and Problem Formulation
- 2 Safe Reinforcement Learning Tracking Control

Safe RL tracking control: Definitions

In the quadrotor control application, controllers that lack security are generally difficult to apply, so this research will theoretically analyze and design a safe RL-based controller

1. Definition: Safety Region c

Define c be the safety state region and $h(x)^a$ be the boundary function:

$$c = \{x \in \mathbb{R}^n \mid h(x) \ge 0\}$$
$$\partial c = \{x \in \mathbb{R}^n \mid h(x) = 0\}$$
$$\operatorname{Int}(c) = \{x \in \mathbb{R}^n \mid h(x) > 0\}$$

on Advanced Robotics and Mechatronics (ICARM).

2. Definition: Barrier Function

Design the barrier function $b(x)^a$:

$$b(x) = \left[\frac{1}{h(x)} - \frac{1}{h(0)}\right]^2$$

- $\forall x(t) \in Int(c), |b(x)| < \infty$
- $\lim_{x\to\partial c} b(x) = \infty$
- b(0) = 0

In: 2023 IEEE Internationa Conference on Development ✓ Q ○

^aJunkai Tan et al. "Nash Equilibrium Solution Based on Safety-Guarding Reinforcement Learning in Nonzero-Sum Game". In: 2023 International Conference

^aJunkai Tan et al. "Safe Human-Machine Cooperative Game with Level-k Rationality Modeled Human Impact".

Safe RL tracking control: NN Design

Neural networks design

According to Weierstrass theorem, a neural network (NN) is designed to approximate the value function and controller.

Approximate value function:

$$V_i(e, x) = W_i^{\star \mathrm{T}} \phi_i(e) + b(x) + \epsilon_i(e)$$

Approximate controller:

$$u_i^{\star} = -\frac{1}{2}R_{ii}^{-1}g_i(e)^{\mathrm{T}}\left(\phi_i^{\prime\mathrm{T}}(e)W_i^{\star} + \mathbf{b}^{\prime\mathrm{T}}(\mathbf{x}) + \epsilon_i^{\prime\mathrm{T}}(\mathbf{x})\right)$$

Optimization objective: value function

Value function $V_i(x_0)$ is the extremum of performance $J_i(x_0, u(\cdot))$:

$$V_i\left(\mathbf{e}_0, \mathbf{x}_0\right) \triangleq \min_{u(\cdot)} J_i\left(\mathbf{e}_0, \mathbf{x}_0, u(\cdot)\right) = \min_{u(\cdot)} \int_0^\infty (Q_i(e) + \sum_{j=1}^N u_j^T R_{ij} u_j + \mathbf{b}(\mathbf{x})) dt$$

Safe RL tracking control: Online Learning

To realize the online update of NN weights, Hamiltonian error is set here as the base element of the update target

$$\delta_{i} = \Omega_{i}^{\mathrm{T}} \sigma_{i} + x^{\mathrm{T}} Q_{i} x + \sum_{j=1}^{N} \frac{1}{4} \omega_{j}^{\mathrm{T}} \sigma_{j}' G_{ij} \sigma_{j}'^{\mathrm{T}} \omega_{j} + \nabla \epsilon_{i}^{\mathsf{T}} \Omega_{i}$$
 (7)

The optimizing object set as normalized least squares Hamiltonian error:

$$E_{i} = \frac{1}{2} \left[\frac{\sigma_{i}^{2}}{\left(1 + \sigma_{i}^{T} \sigma_{i}\right)^{2}} + \sum_{k=1}^{M} \frac{(\sigma_{i}^{k})^{2}}{\left(1 + (\sigma_{i}^{k})^{T} \sigma_{i}^{k}\right)^{2}} \right]$$
(8)

The NN is updated both using current data and historical data:

$$\dot{\hat{\omega}}_{i} = -\beta_{i} \frac{\partial E_{i}}{\partial \omega_{i}} = -\beta_{i} \frac{\sigma_{i} e_{i}}{\left(1 + \sigma_{i}^{T} \sigma_{i}\right)^{2}} - \beta_{i} \sum_{k=1}^{M} \frac{\sigma_{i}^{k} e_{i}^{k}}{\left(1 + (\sigma_{i}^{k})^{T} \sigma_{i}^{k}\right)^{2}} \quad (9)$$

Safe RL tracking control: Stability Theory

Theorem1: Asymptotic stability

NN weights are asymptotically stable as following conditions are met:

$$\begin{cases}
\overline{\mathbf{g}}_{i}\overline{\phi}_{j} < 0 \\
\rho < 0 \\
\beta_{i}\left(\frac{p+1}{2} - 2\lambda_{\min}\left(\Gamma_{k}\right)\right) < 0
\end{cases}$$
(10)

where $ho = \sum_{i=1}^{N} \left[eta_i rac{p+1}{2} \overline{\varepsilon}_i^2 - \left(\overline{\omega}_i \overline{\phi}_i + \overline{\epsilon}_i
ight) \sum_{j=1}^{N} \left(\frac{1}{2} G_j \overline{\phi}_i \| \hat{\omega}_j \| - g_i \overline{\epsilon}_i
ight)
ight]$

Proof: Set the Lyapunov function

$$V_{L} = \sum_{i=1}^{N} (V_{i} + V_{\omega,i})$$
 (11)

where $V_{\omega,i} = \frac{1}{2} \tilde{\omega}_i^{\mathrm{T}} \tilde{\omega}_i$

Safe RL tracking control: Stability Theory

According to the given assumptions, the following inequality holds:

$$\dot{V}_{i} \leq -r_{i} - \left(\overline{\omega}_{i}\overline{\phi}_{i} + \overline{\epsilon}_{i}\right) \sum_{j=1}^{N} \left(\frac{1}{2}G_{j}\overline{\phi}_{i}\|\hat{\omega}_{j}\| - g_{i}\overline{\epsilon}_{i}\right)$$
(12)

$$\dot{V}_{\omega,i} \le \beta_i \left[\frac{p+1}{2} - 2\lambda_{\min} \left(\Gamma_k \right) \right] \left\| \tilde{\omega}_i \right\|^2 + \beta_i \frac{p+1}{2} \overline{\varepsilon}_{\mathsf{hmax},i}^2$$
 (13)

$$\dot{V} \leq -\sum_{i=1}^{N} r_i + \rho
+ \sum_{i=1}^{N} \left[\overline{g}_i \overline{\phi}_i + \beta_i \left(\frac{p+1}{2} - 2\lambda_{\min}(\Gamma_k) \right) \right] \|\widetilde{\omega}_i\|^2$$
(14)

So $V_I \leq 0$ holds, i.e., the asymptotic stability of the weights is proved

- Safe Reinforcement Learning Tracking Control
- 3 Simulation and Hardware Experiment

- Preliminaries and Problem Formulation
- Safe Reinforcement Learning Tracking Control
- 3 Simulation and Hardware Experiment Simulation Verification

The detailed experiment setup is listed as follows:

- 1 Operation platform: Rflysim, Matlab Simulink.
- 2 Aircraft model: DJI-F450 quadrotor.
- **3** Control frequency: 30Hz.

图 1: Learning process of NN

图 2: Position in X-axis and Y-axis

The trajectories of obstacle avoidance tracking control are shown in fig4.

图 3: Quadrotor tracking control with obstacle avoidance 📳

Junkai Tan

Electrical Engineering, Xi'an Jiaotong University

- Preliminaries and Problem Formulation
- Safe Reinforcement Learning Tracking Control
- 3 Simulation and Hardware Experiment Hardware Experiment

The detailed experiment setup is listed as follows:

- Operation platform: Rflysim motion capture OptiTrack.
- 2 Aircraft model: Droneyee-X150 quadrotor.
- 3 Control frequency: 30Hz.

图 4: Droneyee-X150 quadrotor

图 5: Motion capture OptiTrack

Experiment Results

The learning process of the NN weight is presented in fig3. The control input to the quadrotor is showed in fig4.

图 6: NN weight learning process

图 7: Control input to the quadrotor

Experiment Results

The positions and tracking error of the quadrotor are presented in fig5 and fig6, respectively.

- 图 8: Desired and actual position of quadrotor
- 图 9: Tracking error of quadrotor

00000000

图 10: 3-Dimension trajectories of quadrotor

图 11: Experiment environment

References I

- [1]Junkai Tan et al. "Nash Equilibrium Solution Based on Safety-Guarding Reinforcement Learning in Nonzero-Sum Game". In: 2023 International Conference on Advanced Robotics and Mechatronics (ICARM). IEEE. 2023, pp. 630-635.
- [2] Junkai Tan et al. "Safe Human-Machine Cooperative Game with Level-k Rationality Modeled Human Impact". In: 2023 IEEE International Conference on Development and Learning (ICDL). IEEE. 2023, pp. 188–193.

